1887

Abstract

In Gram-negative bacterial cells, disulfide bond formation occurs in the oxidative environment of the periplasm and is catalysed by Dsb (iulfide ond) proteins found in the periplasm and in the inner membrane. In this report the identification of a new subfamily of disulfide oxidoreductases encoded by a gene denoted , and functional characterization of DsbI proteins from and , as well as DsbB from , are described. The N-terminal domain of DsbI is related to DsbB proteins and comprises five predicted transmembrane segments, while the C-terminal domain is predicted to locate to the periplasm and to fold into a -propeller structure. The gene is co-transcribed with a small ORF designated (-ccessory). Based on a series of deletion and complementation experiments it is proposed that DsbB can complement the lack of DsbI but not the converse. In the presence of DsbB, the activity of DsbI was undetectable, hence it probably acts only on a subset of possible substrates of DsbB. To reconstruct the principal events in the evolution of DsbB and DsbI proteins, sequences of all their homologues identifiable in databases were analysed. In the course of this study, previously undetected variations on the common thiol-oxidoreductase theme were identified, such as development of an additional transmembrane helix and loss or migration of the second pair of Cys residues between two distinct periplasmic loops. In conjunction with the experimental characterization of two members of the DsbI lineage, this analysis has resulted in the first comprehensive classification of the DsbB/DsbI family based on structural, functional and evolutionary criteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27483-0
2005-01-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/1/mic1510219.html?itemId=/content/journal/micro/10.1099/mic.0.27483-0&mimeType=html&fmt=ahah

References

  1. Alm, R. A., Ling, L. S., Moir, D. T. & 20 other authors ( 1999; ). Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176–180.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Ames, G. F., Prody, C. & Kutsu, S. ( 1984; ). Simple, rapid, and quantitive release of periplasmic proteins by chloroform. J Bacteriol 160, 1181–1183.
    [Google Scholar]
  4. Bachoual, R., Ouabdesselam, S., Mory, F., Lascols, C., Soussy, C. J. & Tankovic, J. ( 2001; ). Single or double mutational alterations of gyrA associated with fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli. Microb Drug Resist 7, 257–261.[CrossRef]
    [Google Scholar]
  5. Bardwell, J. C., McGovern, K. & Beckwith, J. ( 1991; ). Identification of a protein required for disulfide bond formation in vivo. Cell 67, 581–589.[CrossRef]
    [Google Scholar]
  6. Bardwell, J. C., Lee, J. O., Jander, G., Martin, N., Belin, D. & Beckwith, J. ( 1993; ). A pathway for disulfide bond formation in vivo. Proc Natl Acad Sci U S A 90, 1038–1042.[CrossRef]
    [Google Scholar]
  7. Coker, A. O., Isokpehi, R. D., Thomas, B. N., Amisu, K. O. & Obi, C. L. ( 2002; ). Human campylobacteriosis in developing countries. Emerg Infect Dis 8, 237–244.[CrossRef]
    [Google Scholar]
  8. Collet, J. F. & Bardwell, J. C. ( 2002; ). Oxidative protein folding in bacteria. Mol Microbiol 44, 1–8.[CrossRef]
    [Google Scholar]
  9. Cserzo, M., Wallin, E., Simon, I., von Heijne, G. & Elofsson, A. ( 1997; ). Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng 10, 673–676.[CrossRef]
    [Google Scholar]
  10. Dunn, B. E., Cohen, H. & Blaser, M. J. ( 1997; ). Helicobacter pylori. Clin Microbiol Rev 10, 720–741.
    [Google Scholar]
  11. Heuermann, D. & Haas, R. ( 1998; ). A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation. Mol Gen Genet 257, 519–528.[CrossRef]
    [Google Scholar]
  12. Hirokawa, T., Boon-Chieng, S. & Mitaku, S. ( 1998; ). sosui: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14, 378–379.[CrossRef]
    [Google Scholar]
  13. Hofmann, K. & Stoffel, W. ( 1993; ). TMbase – a database of membrane spanning proteins segments. Biol Chem 374, 166.
    [Google Scholar]
  14. Jander, G., Martin, N. L. & Beckwith, J. ( 1994; ). Two cysteines in each periplasmic domain of the membrane protein DsbB are required for its function in protein disulfide bond formation. EMBO J 13, 5121–5127.
    [Google Scholar]
  15. Jones, D. T. ( 1999; ). Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292, 195–202.[CrossRef]
    [Google Scholar]
  16. Kadokura, H. & Beckwith, J. ( 2002; ). Four cysteines of the membrane protein DsbB act in concert to oxidize its substrate DsbA. EMBO J 21, 2354–2363.[CrossRef]
    [Google Scholar]
  17. Kadokura, H., Bader, M., Tian, H., Bardwell, J. C. & Beckwith, J. ( 2000; ). Roles of a conserved arginine residue of DsbB in linking protein disulfide-bond-formation pathway to the respiratory chain of Escherichia coli. Proc Natl Acad Sci U S A 97, 10884–10889.[CrossRef]
    [Google Scholar]
  18. Kadokura, H., Katzen, F. & Beckwith, J. ( 2003; ). Protein disulfide bond formation in prokaryotes. Annu Rev Biochem 72, 111–135.[CrossRef]
    [Google Scholar]
  19. Karplus, K., Karchin, R., Draper, J., Casper, J., Mandel-Gutfreund, Y., Diekhans, M. & Hughey, R. ( 2003; ). Combining local-structure, fold-recognition, and new fold methods for protein structure prediction. Proteins 53 (suppl. 6), 491–496.[CrossRef]
    [Google Scholar]
  20. Kimball, R. A., Martin, L. & Saier, M. H., Jr ( 2003; ). Reversing transmembrane electron flow: the DsbD and DsbB protein families. J Mol Microbiol Biotechnol 5, 133–149.[CrossRef]
    [Google Scholar]
  21. Korlath, J. A., Osterholm, M. T., Judy, L. A., Forfang, J. C. & Robinson, R. A. ( 1985; ). A point-source outbreak of campylobacteriosis associated with consumption of raw milk. J Infect Dis 152, 592–596.[CrossRef]
    [Google Scholar]
  22. Kurowski, M. A. & Bujnicki, J. M. ( 2003; ). GeneSilico protein structure prediction meta-server. Nucleic Acids Res 31, 3305–3307.[CrossRef]
    [Google Scholar]
  23. Missiakas, D., Georgopoulos, C. & Raina, S. ( 1993; ). Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo. Proc Natl Acad Sci U S A 90, 7084–7088.[CrossRef]
    [Google Scholar]
  24. Notredame, C., Higgins, D. G. & Heringa, J. ( 2000; ). T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302, 205–217.[CrossRef]
    [Google Scholar]
  25. Ouali, M. & King, R. D. ( 2000; ). Cascaded multiple classifiers for secondary structure prediction. Protein Sci 9, 1162–1176.[CrossRef]
    [Google Scholar]
  26. Pawelec, D. P., Korsak, D., Wyszynska, A. K., Rozynek, E., Popowski, J. & Jagusztyn-Krynicka, E. K. ( 2000; ). Genetic diversity of the Campylobacter genes coding immunodominant proteins. FEMS Microbiol Lett 185, 43–49.[CrossRef]
    [Google Scholar]
  27. Peek, J. A. & Taylor, R. K. ( 1992; ). Characterization of a periplasmic thiol : disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae. Proc Natl Acad Sci U S A 89, 6210–6214.[CrossRef]
    [Google Scholar]
  28. Persson, B. & Argos, P. ( 1997; ). Prediction of membrane protein topology utilizing multiple sequence alignments. J Protein Chem 16, 453–457.[CrossRef]
    [Google Scholar]
  29. Raina, S. & Missiakas, D. ( 1997; ). Making and breaking disulfide bonds. Annu Rev Microbiol 51, 179–202.[CrossRef]
    [Google Scholar]
  30. Rietsch, A., Belin, D., Martin, N. & Beckwith, J. ( 1996; ). An in vivo pathway for disulfide bond isomerization in Escherichia coli. Proc Natl Acad Sci U S A 93, 13048–13053.[CrossRef]
    [Google Scholar]
  31. Saitou, N. & Nei, M. ( 1987; ). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  32. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning. A Laboratory Manual, 3rd edn. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.
  33. Stenson, T. H. & Weiss, A. A. ( 2002; ). DsbA and DsbC are required for secretion of pertussis toxin by Bordetella pertussis. Infect Immun 70, 2297–2303.[CrossRef]
    [Google Scholar]
  34. Taylor, D. E. ( 1992; ). Genetic analysis of Campylobacter spp. In Campylobacter jejuni. Current Status and Future Trends, pp. 255–266. Edited by I. Nachamkin, M. J. Blaser & L. S. Tompkins. Washington, DC: American Society for Microbiology.
  35. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  36. Tusnady, G. E. & Simon, I. ( 2001; ). The hmmtop transmembrane topology prediction server. Bioinformatics 17, 849–850.[CrossRef]
    [Google Scholar]
  37. von Heijne, G. ( 1992; ). Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225, 487–494.[CrossRef]
    [Google Scholar]
  38. Warren, J. R. & Marshall, B. ( 1983; ). Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet i, 1273–1275.
    [Google Scholar]
  39. Wassenaar, T. M., Fry, B. N. & van der Zeijst, B. A. ( 1993; ). Genetic manipulation of Campylobacter: evaluation of natural transformation and electro-transformation. Gene 132, 131–135.[CrossRef]
    [Google Scholar]
  40. Yao, R., Alm, R. A., Trust, T. J. & Guerry, P. ( 1993; ). Construction of new Campylobacter cloning vectors and a new mutational cat cassette. Gene 130, 127–130.[CrossRef]
    [Google Scholar]
  41. Yu, J. ( 1998; ). Inactivation of DsbA, but not DsbC and DsbD, affects the intracellular survival and virulence of Shigella flexneri. Infect Immun 66, 3909–3917.
    [Google Scholar]
  42. Yu, J. & Kroll, J. S. ( 1999; ). DsbA: a protein-folding catalyst contributing to bacterial virulence. Microbes Infect 1, 1221–1228.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27483-0
Loading
/content/journal/micro/10.1099/mic.0.27483-0
Loading

Data & Media loading...

Supplements

Sensitivity to DTT. Red squares, KM1086/pBluescript II SK; blue diamonds, JCB656 (dsbB ); black circles, JCB656/pUWM456; green triangles, JCB656/pUWM602.

IMAGE

Electron microscopy of mutant strains. wt, Wild-type 81176; AR1, ; AR2, ; AR3, double mutant.

IMAGE

Accumulation of proteins with reduced cysteines in mutants complemented by and genes. Periplasmic proteins isolated from exponential-growth-phase cells were mixed with Ellman's reagent (final concentration 0.8 mM). The absorbance was measured at 412 nm. KM1086, a wild-type strain; JCB656, mutant; pUWM602, plasmid containing gene; pUWM453, plasmid containing .

IMAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error