1887

Abstract

The K-12 strain TG1 was grown at 28 °C in aerobic glucose-limited continuous cultures at dilution rates ranging from 0·044 to 0·415 h. The rates of biomass formation, the specific rates of glucose, ammonium and oxygen uptake and the specific carbon dioxide evolution rate increased linearly with the dilution rate up to 0·3 h. At dilution rates between 0·3 h and 0·4 h, a strong deviation from the linear increase to lower specific oxygen uptake and carbon dioxide evolution rates occurred. The biomass formation rate and the specific glucose and ammonium uptake rates did not deviate that strongly from the linear increase up to dilution rates of 0·4 h. An increasing percentage of glucose carbon flow towards biomass determined by a reactor mass balance and a decreasing specific ATP production rate concomitant with a decreasing adenylate energy charge indicated higher energetic efficiency of carbon substrate utilization at higher dilution rates. Estimation of metabolic fluxes by a stoichiometric model revealed an increasing activity of the pentose phosphate pathway and a decreasing tricarboxylic acid cycle activity with increasing dilution rates, indicative of the increased NADPH and precursor demand for anabolic purposes at the expense of ATP formation through catabolic activities. Thus, increasing growth rates first result in a more energy-efficient use of the carbon substrate for biomass production, i.e. a lower portion of the carbon substrate is channelled into the respiratory, energy-generating pathway. At dilution rates above 0·4 h, close to the wash-out point, respiration rates dropped sharply and accumulation of glucose and acetic acid was observed. Energy generation through acetate formation yields less ATP compared with complete oxidation of the sugar carbon substrate, but is the result of maximized energy generation under conditions of restrictions in the tricarboxylic acid cycle or in respiratory NADH turnover. Thus, the data strongly support the conclusion that, in aerobic glucose-limited continuous cultures of TG1, two different carbon limitations occur: at low dilution rates, cell growth is limited by cell-carbon supply and, at high dilution rates, by energy-carbon supply.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27481-0
2005-03-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510693.html?itemId=/content/journal/micro/10.1099/mic.0.27481-0&mimeType=html&fmt=ahah

References

  1. Andersen, K. B. & von Meyenburg, K. ( 1980; ). Are growth rates of Escherichia coli in batch cultures limited by respiration? J Bacteriol 144, 114–123.
    [Google Scholar]
  2. Atkinson, D. E. ( 1968; ). The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7, 4030–4034.[CrossRef]
    [Google Scholar]
  3. Bauchop, T. & Elsden, S. R. ( 1960; ). The growth of micro-organisms in relation to their energy supply. J Gen Microbiol 23, 457–469.[CrossRef]
    [Google Scholar]
  4. Benthin, S., Nielsen, J. & Villadsen, J. ( 1991; ). A simple and reliable method for the determination of cellular RNA content. Biotechnol Tech 5, 39–42.[CrossRef]
    [Google Scholar]
  5. Boonstra, B., French, C. E., Wainwright, I. & Bruce, N. C. ( 1999; ). The udhA gene of Escherichia coli encodes a soluble pyridine nucleotide transhydrogenase. J Bacteriol 181, 1030–1034.
    [Google Scholar]
  6. Bragg, P. D., Davies, P. L. & Hou, C. ( 1972; ). Function of energy-dependent transhydrogenase in Escherichia coli. Biochem Biophys Res Commun 47, 1248–1255.[CrossRef]
    [Google Scholar]
  7. Canonaco, F., Hess, T. A., Heri, S., Wang, T., Szyperski, T. & Sauer, U. ( 2001; ). Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol Lett 204, 247–252.[CrossRef]
    [Google Scholar]
  8. Daae, E. B. & Ison, A. P. ( 1999; ). Classification and sensitivity analysis of a proposed primary metabolic reaction network for Streptomyces lividans. Metab Eng 1, 153–165.[CrossRef]
    [Google Scholar]
  9. Doelle, H. W., Ewing, K. N. & Hollywood, N. W. ( 1982; ). Regulation of glucose metabolism in bacterial systems. Adv Biochem Eng 23, 1–35.
    [Google Scholar]
  10. Farmer, I. S. & Jones, C. W. ( 1976; ). The energetics of Escherichia coli during aerobic growth in continuous culture. Eur J Biochem 67, 115–122.[CrossRef]
    [Google Scholar]
  11. Fraenkel, D. G. & Vinopal, R. T. ( 1973; ). Carbohydrate metabolism in bacteria. Annu Rev Microbiol 27, 69–100.[CrossRef]
    [Google Scholar]
  12. Han, K., Lim, H. C. & Hong, J. ( 1992; ). Acetic acid formation in Escherichia coli fermentation. Biotechnol Bioeng 39, 663–671.[CrossRef]
    [Google Scholar]
  13. Herbert, D., Phipps, P. J. & Strange, R. E. ( 1971; ). Chemical analysis of microbial cells. Methods Microbiol 5B, 209–344.
    [Google Scholar]
  14. Hoffmann, F. & Rinas, U. ( 2001; ). On-line estimation of the metabolic burden resulting from synthesis of plasmid-encoded and heat-shock proteins by monitoring respiratory energy generation. Biotechnol Bioeng 76, 333–340.[CrossRef]
    [Google Scholar]
  15. Hua, Q., Yang, C., Baba, T., Mori, H. & Shimizu, K. ( 2003; ). Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J Bacteriol 185, 7053–7067.[CrossRef]
    [Google Scholar]
  16. Ingraham, J. L., Maaloe, O. & Neidhardt, F. C. ( 1983; ). Chemical synthesis of the bacterial cell: polymerization, biosynthesis, fueling reactions, and transport. In Growth of the Bacterial Cell, pp. 87–173. Sunderland, MA: Sinauer Associates.
  17. Karp, P. D., Riley, M., Paley, S. M., Pellegrini-Toole, A. & Krummenacker, M. ( 1999; ). EcoCyc: encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res 27, 55–58.[CrossRef]
    [Google Scholar]
  18. Korz, D. J., Rinas, U., Hellmuth, K., Sanders, E. A. & Deckwer, W.-D. ( 1995; ). Simple fed-batch technique for high cell density cultivation of Escherichia coli. J Biotechnol 39, 59–65.[CrossRef]
    [Google Scholar]
  19. Majewski, R. A. & Domach, M. M. ( 1990; ). Simple constrained-optimization view of acetate overflow in E. coli. Biotechnol Bioeng 35, 732–738.[CrossRef]
    [Google Scholar]
  20. Nielsen, J. & Villadsen, J. ( 1994; ). Bioreaction Engineering Principles. New York: Plenum.
  21. Noronha, S. B., Yeh, H. J. C., Spande, T. F. & Shiloach, J. ( 2000; ). Investigation of the TCA cycle and the glyoxylate shunt in Escherichia coli BL21 and JM109 using 13C-NMR/MS. Biotechnol Bioeng 68, 316–327.[CrossRef]
    [Google Scholar]
  22. Phue, J.-N. & Shiloach, J. ( 2004; ). Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). J Biotechnol 109, 21–30.[CrossRef]
    [Google Scholar]
  23. Pirt, J. ( 1965; ). The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci 163, 224–231.[CrossRef]
    [Google Scholar]
  24. Pramanik, J. & Keasling, J. D. ( 1997; ). Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol Bioeng 56, 398–421.[CrossRef]
    [Google Scholar]
  25. Reiling, H. E., Laurila, H. & Fiechter, A. ( 1985; ). Mass culture of Escherichia coli: medium development for low and high density cultivation of Escherichia coli B/r in minimal and complex media. J Biotechnol 2, 191–206.[CrossRef]
    [Google Scholar]
  26. Riesenberg, D., Schulz, V., Knorre, W. A., Pohl, H.-D., Korz, D., Sanders, E. A., Roß, A. & Deckwer, W.-D. ( 1991; ). High cell density cultivation of Escherichia coli at controlled specific growth rate. J Biotechnol 20, 17–27.[CrossRef]
    [Google Scholar]
  27. Rydström, J. ( 1977; ). Energy-linked nicotinamide nucleotide transhydrogenases. Biochim Biophys Acta 463, 155–184.[CrossRef]
    [Google Scholar]
  28. Ryll, T. & Wagner, R. ( 1991; ). Improved ion-pair high-performance liquid chromatographic method for the quantification of a wide variety of nucleotides and sugar-nucleotides in animal cells. J Chromatogr 570, 77–88.[CrossRef]
    [Google Scholar]
  29. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Schmidt, K., Nielsen, J. & Villadsen, J. ( 1999; ). Quantitative analysis of metabolic fluxes in Escherichia coli, using two-dimensional NMR spectroscopy and complete isotopomer models. J Biotechnol 71, 175–189.[CrossRef]
    [Google Scholar]
  31. Shahab, N., Flett, F., Oliver, S. G. & Butler, P. R. ( 1996; ). Growth rate control of protein and nucleic acid content in Streptomyces coelicolor A3(2) and Escherichia coli B/r. Microbiology 142, 1927–1935.[CrossRef]
    [Google Scholar]
  32. Stouthamer, A. H. ( 1973; ). A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek 39, 545–565.[CrossRef]
    [Google Scholar]
  33. Stouthamer, A. H. & Bettenhaussen, C. ( 1973; ). Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. A reevaluation of the method for the determination of ATP production by measuring molar growth yields. Biochim Biophys Acta 301, 53–70.[CrossRef]
    [Google Scholar]
  34. Theobald, U., Mailinger, W., Baltes, M., Rizzi, M. & Reuss, M. ( 1997; ). In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae. I. Experimental observations. Biotechnol Bioeng 55, 305–316.[CrossRef]
    [Google Scholar]
  35. Vallino, J. J. & Stephanopoulos, G. ( 1990; ). Flux determination in cellular bioreaction networks: applications to lysine fermentations. In Frontiers in Bioprocessing, pp. 205–219. Edited by S. K. Sikdar, M. Bier & P. Todd. Boca Raton, FL: CRC Press.
  36. van Gulik, W. M. & Heijnen, J. J. ( 1995; ). A metabolic network stoichiometry analysis of microbial growth and product formation. Biotechnol Bioeng 48, 681–698.[CrossRef]
    [Google Scholar]
  37. Varma, A. & Palsson, B. O. ( 1993; ). Metabolic capabilities of Escherichia coli. II. Optimal growth patterns. J Theor Biol 165, 503–522.[CrossRef]
    [Google Scholar]
  38. Varma, A. & Palsson, B. O. ( 1994; ). Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 60, 3724–3731.
    [Google Scholar]
  39. Weber, J., Hoffmann, F. & Rinas, U. ( 2002; ). Metabolic adaptation of Escherichia coli during temperature-induced recombinant protein synthesis: 2. Redirection of metabolic fluxes. Biotechnol Bioeng 80, 320–330.[CrossRef]
    [Google Scholar]
  40. Weber, J., Kayser, A. & Rinas, U. ( 2005; ). Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. II. Dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behaviour. Microbiology 151, 707–716.[CrossRef]
    [Google Scholar]
  41. Zeng, A. P., Ross, A. & Deckwer, W.-D. ( 1990; ). A method to estimate the efficiency of oxidative phosphorylation and biomass yield from ATP of a facultative anaerobe in continuous culture. Biotechnol Bioeng 36, 965–969.[CrossRef]
    [Google Scholar]
  42. Zhao, J., Baba, T., Mori, H. & Shimizu, K. ( 2004; ). Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities. Appl Microbiol Biotechnol 64, 91–98.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27481-0
Loading
/content/journal/micro/10.1099/mic.0.27481-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error