1887

Abstract

The opportunistic human pathogen is the predominant micro-organism of chronic lung infections in cystic fibrosis (CF) patients. colonizes the CF lungs by forming biofilm structures in the alveoli. In the biofilm mode of growth the bacteria are highly tolerant to otherwise lethal doses of antibiotics and are protected from bactericidal activity of polymorphonuclear leukocytes (PMNs). controls the expression of many of its virulence factors by means of a cell–cell communication system termed quorum sensing (QS). In the present report it is demonstrated that biofilm bacteria in which QS is blocked either by mutation or by administration of QS inhibitory drugs are sensitive to treatment with tobramycin and HO, and are readily phagocytosed by PMNs, in contrast to bacteria with functional QS systems. In contrast to the wild-type, QS-deficient biofilms led to an immediate respiratory-burst activation of the PMNs . QS-deficient mutants provoked a higher degree of inflammation. It is suggested that quorum signals and QS-inhibitory drugs play direct and opposite roles in this process. Consequently, the faster and highly efficient clearance of QS-deficient bacteria is probably a two-sided phenomenon: down regulation of virulence and activation of the innate immune system. These data also suggest that a combination of the action of PMNs and QS inhibitors along with conventional antibiotics would eliminate the biofilm-forming bacteria before a chronic infection is established.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27463-0
2005-02-01
2020-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510373.html?itemId=/content/journal/micro/10.1099/mic.0.27463-0&mimeType=html&fmt=ahah

References

  1. Anwar H., Strap J. L., Chen K., Costerton J. W. 1992; Dynamic interactions of biofilms of mucoid Pseudomonas aeruginosa with tobramycin and piperacillin. Antimicrob Agents Chemother36:1208–1214[CrossRef]
    [Google Scholar]
  2. Bagge N., Hentzer M., Andersen J. B., Ciofu O., Givskov M., Hoiby N. 2004a; Dynamics and spatial distribution of beta-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother48:1168–1174[CrossRef]
    [Google Scholar]
  3. Bagge N., Schuster M., Hentzer M., Ciofu O., Givskov M., Greenberg E. P., Hoiby N. 2004b; Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother48:1175–1187[CrossRef]
    [Google Scholar]
  4. Baltimore R. S., Christie C. D., Smith G. J. 1989; Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Implications for the pathogenesis of progressive lung deterioration. Am Rev Respir Dis140:1650–1661[CrossRef]
    [Google Scholar]
  5. Bassoe C. F., Li N., Ragheb K., Lawler G., Sturgis J., Robinson J. P. 2003; Investigations of phagosomes, mitochondria, and acidic granules in human neutrophils using fluorescent probes. Cytometry51B:21–29[CrossRef]
    [Google Scholar]
  6. Bauernfeind A., Bertele R. M., Harms K., Horl G., Jungwirth R., Petermuller C., Przyklenk B., Weisslein-Pfister C. 1987; Qualitative and quantitative microbiological analysis of sputa of 102 patients with cystic fibrosis. Infection15:270–277[CrossRef]
    [Google Scholar]
  7. Beatson S. A., Whitchurch C. B., Semmler A. B., Mattick J. S. 2002; Quorum sensing is not required for twitching motility in Pseudomonas aeruginosa. J Bacteriol184:3598–3604[CrossRef]
    [Google Scholar]
  8. Chhabra S. R., Harty C., Hooi D. S., Daykin M., Williams P., Telford G., Pritchard D. I., Bycroft B. W. 2003; Synthetic analogues of the bacterial signal (quorum sensing) molecule N-(3-oxododecanoyl)-l-homoserine lactone as immune modulators. J Med Chem46:97–104[CrossRef]
    [Google Scholar]
  9. Christensen B. B., Sternberg C., Andersen J. B., Palmer R. J. Jr, Nielsen A. T., Givskov M., Molin S. 1999; Molecular tools for study of biofilm physiology. Methods Enzymol310:20–42
    [Google Scholar]
  10. Ciofu O. 2003; Pseudomonas aeruginosa chromosomal beta-lactamase in patients with cystic fibrosis and chronic lung infection. Mechanism of antibiotic resistance and target of the humoral immune response. APMIS Suppl116:1–47
    [Google Scholar]
  11. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P. 1998; The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science280:295–298[CrossRef]
    [Google Scholar]
  12. Davis P. B., Drumm M., Konstan M. W. 1996; Cystic fibrosis. Am J Respir Crit Care Med154:1229–1256[CrossRef]
    [Google Scholar]
  13. DiMango E., Zar H. J., Bryan R., Prince A. 1995; Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8. J Clin Invest96:2204–2210[CrossRef]
    [Google Scholar]
  14. Doring G., Buhl V., Hoiby N., Schiotz P. O., Botzenhart K. 1984; Detection of proteases of Pseudomonas aeruginosa in immune complexes isolated from sputum of cystic fibrosis patients. Acta Pathol Microbiol Immunol Scand[C] 92:307–12
    [Google Scholar]
  15. Elkins J. G., Hassett D. J., Stewart P. S., Schweizer H. P., McDermott T. R. 1999; Protective role of catalase in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide. Appl Environ Microbiol65:4594–4600
    [Google Scholar]
  16. Fuqua W. C., Winans S. C., Greenberg E. P. 1994; Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol176:269–275
    [Google Scholar]
  17. Gilbert P., Allison D. G., McBain A. J. 2002; Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance?. Symp Ser Soc Appl Microbiol31:98S–110S
    [Google Scholar]
  18. Gilligan P. H. 1991; Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev4:35–51
    [Google Scholar]
  19. Giwercman B., Meyer C., Lambert P. A., Reinert C., Hoiby N. 1992; High-level beta-lactamase activity in sputum samples from cystic fibrosis patients during antipseudomonal treatment. Antimicrob Agents Chemother36:71–76[CrossRef]
    [Google Scholar]
  20. Goldstein W., Doring G. 1986; Lysosomal enzymes from polymorphonuclear leukocytes and proteinase inhibitors in patients with cystic fibrosis. Am Rev Respir Dis134:49–56
    [Google Scholar]
  21. Hassett D. J., Ma J. F., Elkins J. G. & 10 other authors. 1999; Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol34:1082–1093[CrossRef]
    [Google Scholar]
  22. Hentzer M., Teitzel G. M., Balzer G. J., Heydorn A., Molin S., Givskov M., Parsek M. R. 2001; Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol183:5395–5401[CrossRef]
    [Google Scholar]
  23. Hentzer M., Wu H., Andersen J. B. & 15 other authors. 2003; Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J22:3803–3815[CrossRef]
    [Google Scholar]
  24. Heydorn A., Nielsen A. T., Hentzer M., Sternberg C., Givskov M., Ersboll B. K., Molin S. 2000; Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology146:2395–2407
    [Google Scholar]
  25. Hoiby N. 1974; Epidemiological investigations of the respiratory tract bacteriology in, patients with cystic fibrosis. Acta Pathol Microbiol Scand [B] Microbiol Immunol82:541–550
    [Google Scholar]
  26. Jensen P. O. 2003; Characterization and modulation of the innate immune response during Pseudomonas aeruginosa lung infection in patients with cystic fibrosis: an experimental and clinical study PhD thesis University of Copenhagen;
    [Google Scholar]
  27. Jesaitis A. J., Franklin M. J., Berglund D., Sasaki M., Lord C. I., Bleazard J. B., Duffy J. E., Beyenal H., Lewandowski Z. 2003; Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol171:4329–4339[CrossRef]
    [Google Scholar]
  28. Kharazmi A., Hoiby N., Doring G., Valerius N. H. 1984; Pseudomonas aeruginosa exoproteases inhibit human neutrophil chemiluminescence. Infect Immun44:587–591
    [Google Scholar]
  29. Koch C., Hoiby N. 1993; Pathogenesis of cystic fibrosis. Lancet341:1065–1069[CrossRef]
    [Google Scholar]
  30. Koch C., Hoiby N. 2000; Diagnosis and treatment of cystic fibrosis. Respiration67:239–247[CrossRef]
    [Google Scholar]
  31. Konstan M. W., Berger M. 1997; Current understanding of the inflammatory process in cystic fibrosis: onset and etiology. Pediatr Pulmonol24:137–142[CrossRef]
    [Google Scholar]
  32. Konstan M. W., Byard P. J., Hoppel C. L., Davis P. B. 1995; Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med332:848–854[CrossRef]
    [Google Scholar]
  33. Latifi A., Foglino M., Tanaka K., Williams P., Lazdunski A. 1996; A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol21:1137–1146[CrossRef]
    [Google Scholar]
  34. Mathee K., Ciofu O., Sternberg C.. 9 other authors 1999; Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology145:1349–1357[CrossRef]
    [Google Scholar]
  35. McKnight S. L., Iglewski B. H., Pesci E. C. 2000; The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol182:2702–2708[CrossRef]
    [Google Scholar]
  36. Medina G., Juarez K., Diaz R., Soberon-Chavez G. 2003; Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiology149:3073–3081[CrossRef]
    [Google Scholar]
  37. Moser C., Johansen H. K., Song Z., Hougen H. P., Rygaard J., Hoiby N. 1997; Chronic Pseudomonas aeruginosa lung infection is more severe in Th2 responding BALB/c mice compared to Th1 responding C3H/HeN mice. APMIS105:838–842[CrossRef]
    [Google Scholar]
  38. Moser C., Hougen H. P., Song Z., Rygaard J., Kharazmi A., Hoiby N. 1999; Early immune response in susceptible and resistant mice strains with chronic Pseudomonas aeruginosa lung infection determines the type of T-helper cell response. APMIS107:1093–1100[CrossRef]
    [Google Scholar]
  39. Moser C., Kjaergaard S., Pressler T., Kharazmi A., Koch C., Hoiby N. 2000; The immune response to chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is predominantly of the Th2 type. APMIS108:329–335[CrossRef]
    [Google Scholar]
  40. Nussler A. K., Wittel U. A., Nussler N. C., Beger H. G. 1999; Leukocytes, the Janus cells in inflammatory disease. Langenbecks Arch Surg384:222–232[CrossRef]
    [Google Scholar]
  41. Palma M., DeLuca D., Worgall S., Quadri L. E. 2004; Transcriptome analysis of the response of Pseudomonas aeruginosa to hydrogen peroxide. J Bacteriol186:248–252[CrossRef]
    [Google Scholar]
  42. Pedersen S. S., Shand G. H., Hansen B. L., Hansen G. N. 1990; Induction of experimental chronic Pseudomonas aeruginosa lung infection with P. aeruginosa entrapped in alginate microspheres. APMIS98:203–211[CrossRef]
    [Google Scholar]
  43. Pesci E. C., Pearson J. P., Seed P. C., Iglewski B. H. 1997; Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol179:3127–3132
    [Google Scholar]
  44. Pesci E. C., Milbank J. B., Pearson J. P., McKnight S., Kende A. S., Greenberg E. P., Iglewski B. H. 1999; Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A96:11229–11234[CrossRef]
    [Google Scholar]
  45. Rumbaugh K. P., Griswold J. A., Iglewski B. H., Hamood A. N. 1999; Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun67:5854–5862
    [Google Scholar]
  46. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P. 2003; Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol185:2066–2079[CrossRef]
    [Google Scholar]
  47. Shih P. C., Huang C. T. 2002; Effects of quorum-sensing deficiency on Pseudomonsa aeruginosa biofilm formation and antibiotic resistance. J Antimicrob Chemother49:309–314[CrossRef]
    [Google Scholar]
  48. Smith R. S., Fedyk E. R., Springer T. A., Mukaida N., Iglewski B. H., Phipps R. P. 2001; IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-kappa B and activator protein-2. J Immunol167:366–374[CrossRef]
    [Google Scholar]
  49. Smith R. S., Kelly R., Iglewski B. H., Phipps R. P. 2002; The Pseudomonas autoinducer N-(3-oxododecanoyl) homoserine lactone induces cyclooxygenase-2 and prostaglandin E2 production in human lung fibroblasts: implications for inflammation. J Immunol169:2636–2642[CrossRef]
    [Google Scholar]
  50. Stewart P. S., Costerton J. W. 2001; Antibiotic resistance of bacteria in biofilms. Lancet358:135–138[CrossRef]
    [Google Scholar]
  51. Tateda K., Ishii Y., Horikawa M., Matsumoto T., Miyairi S., Pechere J. C., Standiford T. J., Ishiguro M., Yamaguchi K. 2003; The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect Immun71:5785–5793[CrossRef]
    [Google Scholar]
  52. Telford G., Wheeler D., Williams P., Tomkins P. T., Appleby P., Sewell H., Stewart G. S., Bycroft B. W., Pritchard D. I. 1998; The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity. Infect Immun66:36–42
    [Google Scholar]
  53. Wagner V. E., Bushnell D., Passador L., Brooks A. I., Iglewski B. H. 2003; Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol185:2080–2095[CrossRef]
    [Google Scholar]
  54. Wu H., Song Z., Givskov M., Doring G., Worlitzsch D., Mathee K., Rygaard J., Hoiby N. 2001; Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology147:1105–1113
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27463-0
Loading
/content/journal/micro/10.1099/mic.0.27463-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error