1887

Abstract

The amplification of an internal fragment of the gene for histidine decarboxylase in showed the gene to be located on the bacterial chromosome. Reverse PCR was then used to amplify both it and its adjacent genes. The histidine decarboxylase cluster was found to be composed of four genes: (expressed in , the product of which is located in the membrane, suggesting it to be a histidine/histamine antiporter), (which encodes histidine decarboxylase), (of unknown function but co-transcribed as bicistronic mRNA together with ) and (the only copy of a gene encoding a histidyl-tRNA synthetase in ). The expression of depends on the histidine concentration of the growth medium, and it can be transcribed as monocistronic or polycistronic mRNA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27459-0
2005-04-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/4/mic1511219.html?itemId=/content/journal/micro/10.1099/mic.0.27459-0&mimeType=html&fmt=ahah

References

  1. Alekseeva, A. E., Prozorovskii, V. N. & Grebenschchikova, O. G. ( 1976; ). Amino acid sequence in tryptic peptides of maleylated Micrococcus sp. n. histidine decarboxylase beta-polypeptide chain. Biokhimya 41, 1760–1765.
    [Google Scholar]
  2. Altschul, S. F., Stephen, F., Thomas, L. & 7 other authors ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Bodmer, S., Imark, C. & Kneubühl, M. ( 1999; ). Biogenic amines in foods: histamine and food processing. Inflamm Res 48, 296–300.[CrossRef]
    [Google Scholar]
  4. Bond, J. P. & Francklyn, C. ( 2000; ). Proteobacterial histidine-biosynthetic pathways are paraphyletic. J Mol Evol 50, 339–347.
    [Google Scholar]
  5. Chang, G. W. & Snell, E. E. ( 1968; ). Histidine decarboxylase of Lactobacillus 30a: purification, substrate specificity and stereo-specificity. Biochemistry 7, 2005–2012.[CrossRef]
    [Google Scholar]
  6. Connil, N., Le Breton, Y., Dousset, X., Auffray, Y., Rincé, A. & Prévost, H. ( 2002; ). Identification of the Enterococcus faecalis tyrosine decarboxylase operon involved in tyramine production. Appl Environ Microbiol 68, 3537–3544.[CrossRef]
    [Google Scholar]
  7. Coton, E., Rollan, G. C. & Lonvaud-Funel, A. ( 1998; ). Histidine decarboxylase of Leuconostoc œnos 9204: purification, kinetic properties, cloning and nucleotide sequence of the hdc gene. J Appl Microbiol 84, 143–151.[CrossRef]
    [Google Scholar]
  8. Delorme, C., Ehrlich, S. D. & Renault, P. ( 1999; ). Regulation of expression of the Lactococcus lactis histidine operon. J Bacteriol 181, 2026–2037.
    [Google Scholar]
  9. Devereux, J., Haeberli, P. & Smithies, O. ( 1984; ). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387–395.[CrossRef]
    [Google Scholar]
  10. Fernández, M., Linares, D. M. & Alvarez, M. A. ( 2004; ). Sequencing of the tyrosine decarboxylase cluster of Lactococcus lactis IPLA 655 and the development of a PCR method for detecting tyrosine decarboxylating lactic acid bacteria. J Food Prot 67, 2521–2529.
    [Google Scholar]
  11. Francklyn, C., Adams, J. & Augustine, J. ( 1998; ). Catalytic defects in mutants of class II histidyl-tRNA synthetase from Salmonella typhimurium previously linked to decreased control of histidine biosynthesis regulation. J Mol Biol 280, 847–858.[CrossRef]
    [Google Scholar]
  12. Grundy, F. J. & Henkin, T. M. ( 1994; ). Conservation of a transcription antitermination mechanism in aminoacyl-tRNA synthetase and amino acid biosynthesis genes in Gram-positive bacteria. J Mol Biol 235, 798–804.[CrossRef]
    [Google Scholar]
  13. Hackert, M. L., Meador, W. E., Oliver, R. M., Salmon, J. B., Recsei, P. A. & Snell, E. E. ( 1981; ). Crystallization and subunit structure of histidine decarboxylase from Lactobacillus 30a. J Biol Chem 256, 687–690.
    [Google Scholar]
  14. Henkin, T. M. ( 1994; ). tRNA-directed transcription antitermination. Mol Microbiol 13, 381–387.[CrossRef]
    [Google Scholar]
  15. Hirokawa, T., Boon-Chieng, S. & Mitaku, S. ( 1998; ). sosui: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14, 378–379.[CrossRef]
    [Google Scholar]
  16. Hofmann, K. & Stoffel, W. ( 1993; ). TM base – a database of membrane spanning proteins segments. Biol Chem Hoppe Seyler 374, 166.
    [Google Scholar]
  17. Hopwood, D. A., Bibb, M. J., Chater, K. F. & 7 other authors ( 1985; ). Genetic Manipulation of Streptomyces: a Laboratory Manual. Norwich, UK: The John Innes Foundation, John Innes Institute.
  18. Joosten, H. M. L. J. & Northolt, M. D. ( 1989; ). Detection, growth, and amine-producing capacity of lactobacilli in cheese. Appl Environ Microbiol 55, 2356–2359.
    [Google Scholar]
  19. Kashiwagi, K., Miyamoto, S., Suzuki, F., Kobayashi, H. & Igarashi, K. ( 1992; ). Excretion of putrescine by the putrescine–ornithine antiporter encoded by the potE gene of Escherichia coli. Proc Natl Acad Sci U S A 89, 4529–4533.[CrossRef]
    [Google Scholar]
  20. Kuipers, O. P., Beerthuyzen, M. M., Siezen, R. J. & de Vos, W. M. ( 1993; ). Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem 216, 281–291.[CrossRef]
    [Google Scholar]
  21. Kuipers, O. P., de Ruyter, P. G. G. A., Kleerebezem, M. & de Vos, W. M. ( 1998; ). Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64, 15–21.[CrossRef]
    [Google Scholar]
  22. Le Jeune, C., Lonvaud-Funel, A., Ten Brink, B., Hofstra, H. & van der Vossen, J. M. B. M. ( 1995; ). Development of a detection system for histidine decarboxylating lactic acid bacteria based on DNA probes, PCR and activity test. J Appl Bacteriol 78, 316–326.[CrossRef]
    [Google Scholar]
  23. Lucas, P., Landete, J., Coton, M., Coton, E. & Lonvaud-Funel, A. ( 2003; ). The tyrosine decarboxylase operon of Lactobacillus brevis IOEB 9809: characterization and conservation in tyramine-producing bacteria. FEMS Microbiol Lett 229, 65–71.[CrossRef]
    [Google Scholar]
  24. Marchler-Bauer, A., Anderson, J. B., De Weese-Scott, C. & 24 other authors ( 2003; ). CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res 31, 383–387.[CrossRef]
    [Google Scholar]
  25. Meng, S. Y. & Bennett, G. N. ( 1992; ). Nucleotide sequence of the Escherichia coli cad operon: a system for neutralization of low extracellular pH. J Bacteriol 174, 2659–2669.
    [Google Scholar]
  26. Molenaar, D., Bosscher, J. S., ten Brink, B., Driessen, A. J. M. & Konings, W. N. ( 1993; ). Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J Bacteriol 175, 2864–2870.
    [Google Scholar]
  27. Neely, M. N., Dell, C. L. & Olson, E. R. ( 1994; ). Roles of LysP and CadC in mediating the lysine requirement for acid induction of Escherichia coli cad operon. J Bacteriol 176, 3278–3285.
    [Google Scholar]
  28. Prozorovski, V. & Jörnvall, H. ( 1975; ). Structural studies of histidine decarboxylase from Micrococcus spp. Eur J Biochem 53, 169–174.[CrossRef]
    [Google Scholar]
  29. Raibaud, P., Caulet, M., Galpin, J. V. & Mocquot, G. ( 1961; ). Studies on the bacterial flora of the alimentary tract of pigs. II. Streptococci: selective enumeration and differentiation of the dominant group. J Appl Bacteriol 24, 285–306.[CrossRef]
    [Google Scholar]
  30. Recsei, P. A., Huynh, Q. K. & Snell, E. E. ( 1983a; ). Conversion of prohistidine decarboxylase to histidine decarboxylase: peptide chain cleavage by nonhydrolytic serinolysis. Proc Natl Acad Sci U S A 80, 973–977.[CrossRef]
    [Google Scholar]
  31. Recsei, P. A., Moore, W. M. & Snell, E. E. ( 1983b; ). Pyruvoyl-dependent histidine decarboxylases from Clostridium perfringens and Lactobacillus buchneri. J Biol Chem 258, 439–444.
    [Google Scholar]
  32. Riley, W. D. & Snell, E. E. ( 1968; ). Histidine decarboxylase of Lactobacillus 30a. IV. The presence of covalently bound pyruvate as the prosthetic group. Biochemistry 7, 3520–3528.[CrossRef]
    [Google Scholar]
  33. Riley, W. D. & Snell, E. E. ( 1970; ). Histidine decarboxylase of Lactobacillus 30a. V. Origin of enzyme-bound pyruvate and separation of nonidentical subunits. Biochemistry 9, 1485–1491.[CrossRef]
    [Google Scholar]
  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Scheirlink, T., Mahillon, J., Joos, H., Dhaese, P. & Michiels, F. ( 1989; ). Integration and expression of α-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Appl Environ Microbiol 55, 2130–2137.
    [Google Scholar]
  36. Shimizu, T., Ohtani, K., Hirakawa, H. & 7 other authors ( 2002; ). Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci U S A 99, 996–1001.[CrossRef]
    [Google Scholar]
  37. Silla Santos, M. H. ( 1996; ). Biogenic amines: their importance in foods. Int J Food Microbiol 29, 213–231.[CrossRef]
    [Google Scholar]
  38. Van Bolegelen, R. A., Vaughn, V. & Neidhardt, F. C. ( 1983; ). Gene for heat-inducible lysyl-tRNA synthetase (lysU) maps near cadA in Escherichia coli. J Bacteriol 153, 1066–1068.
    [Google Scholar]
  39. Vanderslice, P., Copeland, W. C. & Robertus, J. D. ( 1986; ). Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase from Lactobacillus 30a. J Biol Chem 261, 15186–15191.
    [Google Scholar]
  40. Van Poelje, P. D. & Snell, E. E. ( 1990; ). Cloning, sequencing, expression, and site-directed mutagenesis of the gene from Clostridium perfringens encoding pyruvoyl-dependent histidine decarboxylase. Biochemistry 29, 132–139.[CrossRef]
    [Google Scholar]
  41. Vieira, J. & Messing, J. ( 1991; ). New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100, 189–194.[CrossRef]
    [Google Scholar]
  42. Yanofsky, C. ( 1981; ). Attenuation in the control of expression of bacterial operons. Nature 289, 751–758.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27459-0
Loading
/content/journal/micro/10.1099/mic.0.27459-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error