1887

Abstract

produces several extracellular proteases which are believed to be involved in the regulation of the ligninolytic activities of this fungus. Recently, purification and characterization of the most abundant extracellular protease (Sl) have been reported. The sequence of the gene and of the corresponding cDNA has been determined, allowing the identification of its pre- and pro-sequences. A mature protein sequence has been verified by mass spectrometry mapping, the -glycosylation sites have been identified and the glycosidic moieties characterized. Mature Sl shows a cleaved peptide bond in the C-terminal region, which remains associated with the catalytic domain in a non-covalent complex. Reported results indicate that this enzyme is involved in the activation of other secreted proteases, thus suggesting its leading role in cascade activation mechanisms. Analyses of the Sl sequence by homology search resulted in the identification of a DNA sequence encoding a new protease, homologous to Sl, in the genome. A new subgroup of subtilisin-like proteases, belonging to the pyrolysin family, has been defined, which includes proteases from ascomycete and basidiomycete fungi.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27441-0
2005-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510457.html?itemId=/content/journal/micro/10.1099/mic.0.27441-0&mimeType=html&fmt=ahah

References

  1. Bagga S., Hu G., Screen S. E., St Leger R. J. 2004; Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae . Gene 324:159–169 [CrossRef]
    [Google Scholar]
  2. Bode W., Papamokos E., Musil D. 1987; The high-resolution X-ray crystal structure of the complex formed between subtilisin Carlsberg and eglin c, an elastase inhibitor from the leech Hirudo medicinalis. Structural analysis, subtilisin structure and interface geometry. Eur J Biochem 166:673–692 [CrossRef]
    [Google Scholar]
  3. Bryan P., Wang L., Hoskins J., Ruvinov S., Strausberg S., Alexander P., Almog O., Gilliland G., Gallagher T. 1995; Catalysis of a protein folding reaction: mechanistic implications of the 2·0 A structure of the subtilisin-prodomain complex. Biochemistry 34:10310–10318 [CrossRef]
    [Google Scholar]
  4. Dass S. B., Dosoretz C. G., Reddy C. A., Grethlein H. E. 1995; Extracellular proteases produced by the wood-degrading fungus Phanerochaete chrysosporium under ligninolytic and non-ligninolytic conditions. Arch Microbiol 163:254–258 [CrossRef]
    [Google Scholar]
  5. Dosoretz C. G., Dass B., Reddy A., Grethlein H. E. 1990; Protease-mediated degradation of lignin peroxidase in liquid cultures of Phanerochaete chrysosporium . Appl Environ Microbiol 56:395–400
    [Google Scholar]
  6. Giardina P., Cannio R., Martirani L., Marzullo L., Palmieri G., Sannia G. 1995; Cloning and sequencing of a laccase from the lignin degrading basidiomycete Pleurotus ostreatus . Appl Environ Microbiol 61:2408–2413
    [Google Scholar]
  7. Gron H., Meldal M., Breddam K. 1992; Extensive comparison of the substrate preferences of two subtilisins as determined with peptide substrates which are based on the principle of intramolecular quenching. Biochemistry 26:6011–6018
    [Google Scholar]
  8. Jain S. C., Shinde U., Li Y., Inouye M., Barman H. M. 1998; The crystal structure of an autoprocessed Ser221Cys-subtilisin E-propeptide complex at 2·0 A resolution. J Mol Biol 284:137–144 [CrossRef]
    [Google Scholar]
  9. Lucas M. C., Jacobson J. W., Giles N. H. 1977; Characterization and in vitro translation of polyadenylated messanger ribonucleic acid from Neurospora crassa . J Bacteriol 130:1192–1198
    [Google Scholar]
  10. Luo X., Hofmann K. 2001; The protease-associated domain: a homology domain associated with multiple classes of proteases. Trends Biochem Sci 26:147–148 [CrossRef]
    [Google Scholar]
  11. Mahon P., Bateman A. 2000; The PA domain: a protease-associated domain. Protein Sci 9:1930–1934 [CrossRef]
    [Google Scholar]
  12. Ness J. E., Kim S., Gottman A., Pak R., Krebber A., Borchert T. V., Govindarajan S., Mundorff E. C., Minshull J. 2002; Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently. J Nat Biotechnol 20:1251–1255 [CrossRef]
    [Google Scholar]
  13. Palmieri G., Giardina P., Bianco C., Scaloni A., Capasso A., Sannia G. 1997; A novel white laccase from Pleurotus ostreatus. J Biol Chem 272:31301–31307 [CrossRef]
    [Google Scholar]
  14. Palmieri G., Giardina P., Bianco C., Fontanella B., Sannia G. 2000; Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus . Appl Environ Microbiol 66:920–924 [CrossRef]
    [Google Scholar]
  15. Palmieri G., Bianco C., Cennamo G., Giardina P., Marino G., Monti M., Sannia G. 2001; Purification, characterization, and functional role of a novel extracellular protease from Pleurotus ostreatus . Appl Environ Microbiol 67:2754–2759 [CrossRef]
    [Google Scholar]
  16. Palmieri G., Cennamo G., Faraco V., Amoresano A., Sannia G., Giardina P. 2003; Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzyme Microb Technol 33:220–230 [CrossRef]
    [Google Scholar]
  17. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Siezen R. J., Leunissen J. A. 1997; Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci 6:501–523
    [Google Scholar]
  19. Sloma A., Rufo G. A. Jr, Theriault K. A., Dwyer M., Wilson S. W., Pero J. 1991; Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis. J Bacteriol 173:6889–6895
    [Google Scholar]
  20. Sroga G. E., Dordick J. S. 2001; Generation of a broad esterolytic subtilisin using combined molecular evolution and periplasmic expression. Protein Eng 14:929–937 [CrossRef]
    [Google Scholar]
  21. Voorhorst W. G., Eggen R. I., Geerling A. C., Platteeuw C., Siezen R. J., Vos W. M. 1996; Isolation and characterization of the hyperthermostable serine protease, pyrolysin, and its gene from the hyperthermophilic archaeon Pyrococcus furiosus . J Biol Chem 271:20426–20431 [CrossRef]
    [Google Scholar]
  22. Voorhorst W. G., Warner A., de Vos W. M., Siezen R. J. 1997; Homology modelling of two subtilisin-like proteases from the hyperthermophilic archaea Pyrococcus furiosus and Thermococcus stetteri . Protein Eng 10:905–914 [CrossRef]
    [Google Scholar]
  23. Wright C. S., Alden R. A., Kraut J. 1969; Structure of subtilisin BPN′ at 2·5 angstrom resolution. Nature 221:235–242 [CrossRef]
    [Google Scholar]
  24. Yabuta Y., Takagi H., Inouye M., Shinde U. 2001; Folding pathway mediated by an intramolecular chaperone: propeptide release modulates activation precision of pro-subtilisin. J Biol Chem 276:44427–44434 [CrossRef]
    [Google Scholar]
  25. Yabuta Y., Subbian E., Oiry C., Shinde U. 2003; Folding pathway mediated by an intramolecular chaperone. A functional peptide chaperone designed using sequence databases. J Biol Chem 278:15246–15251 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27441-0
Loading
/content/journal/micro/10.1099/mic.0.27441-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error