1887

Abstract

The cereal pathogen species complex (e.g. , previously referred to as lineage 6) produces the mycotoxin trichothecene in infected grains. The fungus has a gene for self-defence, , which is responsible for 3--acetylation of the trichothecene skeleton in the biosynthetic pathway. Recently, trichothecene non-producers and (teleomorph ) were shown to have both functional () and non-functional (pseudo-) trichothecene 3--acetyltransferase genes in their genome. To gain insight into the evolution of the trichothecene genes in species, the authors examined whether or not other (pseudo-)biosynthesis-related genes are found near . However, sequence analysis of a 12 kb region containing did not result in identification of additional trichothecene (pseudo-)genes in . In a further attempt to find other trichothecene (pseudo-)genes from the non-producer, the authors examined whether or not the non-trichothecene genes flanking the ends of the core trichothecene gene cluster (i.e. the cluster) comprise a region of synteny in species. However, it was not possible to isolate trichothecene (pseudo-)genes from (in addition to the previously identified pseudo-), because synteny was not observed for this region in and . In contrast to this unsuccessful identification of additional trichothecene (pseudo-)genes in the non-producer, a functional trichothecene 3--acetyltransferase gene could be identified in fusaria other than : and ; and in an ascomycete from a different fungal genus, . Together with the recent functional identification of , these results are suggestive of a different evolutionary origin for the trichothecene 3--acetyltransferase gene from other biosynthesis pathway genes. The phylogeny of the 3--acetyltransferase was mostly concordant with the rDNA species phylogeny of these ascomycetous fungi.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27435-0
2005-02-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510509.html?itemId=/content/journal/micro/10.1099/mic.0.27435-0&mimeType=html&fmt=ahah

References

  1. Ahn, J. H. & Walton, J. D. ( 1996; ). Chromosomal organization of TOX2, a complex locus controlling host-selective toxin biosynthesis in Cochliobolus carbonum. Plant Cell 8, 887–897.[CrossRef]
    [Google Scholar]
  2. Alexander, N. J., McCormick, S. P. & Hohn, T. M. ( 2002; ). The identification of the Saccharomyces cerevisiae gene AYT1(ORF-YLL063c) encoding an acetyltransferase. Yeast 19, 1425–1430.[CrossRef]
    [Google Scholar]
  3. Ballance, D. J. ( 1986; ). Sequences important for gene expression in filamentous fungi. Yeast 2, 229–236.[CrossRef]
    [Google Scholar]
  4. Banno, S., Kimura, M., Tokai, T. & 7 other authors ( 2003; ). Cloning and characterization of genes specifically expressed during infection stages in the rice blast fungus. FEMS Microbiol Lett 222, 221–227.[CrossRef]
    [Google Scholar]
  5. Beremand, M. N. ( 1987; ). Isolation and characterization of mutants blocked in T-2 toxin biosynthesis. Appl Environ Microbiol 53, 1855–1859.
    [Google Scholar]
  6. Bowyer, P., Clarke, B. R., Lunness, P., Daniels, M. J. & Osbourn, A. E. ( 1995; ). Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science 267, 371–374.[CrossRef]
    [Google Scholar]
  7. Brown, D. W., McCormick, S. P., Alexander, N. J., Proctor, R. H. & Desjardins, A. E. ( 2001; ). A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet Biol 32, 121–133.[CrossRef]
    [Google Scholar]
  8. Brown, D. W., McCormick, S. P., Alexander, N. J., Proctor, R. H. & Desjardins, A. E. ( 2002; ). Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet Biol 36, 224–233.[CrossRef]
    [Google Scholar]
  9. Brown, D. W., Proctor, R. H., Dyer, R. B. & Plattner, R. D. ( 2003; ). Characterization of a Fusarium 2-gene cluster involved in trichothecene C-8 modification. J Agric Food Chem 51, 7936–7944.[CrossRef]
    [Google Scholar]
  10. Clemens, S., Schroeder, J. I. & Degenkolb, T. ( 2001; ). Caenorhabditis elegans expresses a functional phytochelatin synthase. Eur J Biochem 268, 3640–3643.[CrossRef]
    [Google Scholar]
  11. Covert, S. F., Enkerli, J., Miao, V. P. & VanEtten, H. D. ( 1996; ). A gene for maackiain detoxification from a dispensable chromosome of Nectria haematococca. Mol Gen Genet 251, 397–406.
    [Google Scholar]
  12. Cundliffe, E. ( 1989; ). How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol 43, 207–233.[CrossRef]
    [Google Scholar]
  13. Desjardins, A. E., Hohn, T. M. & McCormick, S. P. ( 1993; ). Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Rev 57, 595–604.
    [Google Scholar]
  14. Glenn, A. E., Gold, S. E. & Bacon, C. W. ( 2002; ). Fdb1 and Fdb2, Fusarium verticillioides loci necessary for detoxification of preformed antimicrobials from corn. Mol Plant–Microbe Interact 15, 91–101.[CrossRef]
    [Google Scholar]
  15. Hohn, T. M. & Beremand, P. D. ( 1989; ). Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene-producing fungus Fusarium sporotrichioides. Gene 79, 131–138.[CrossRef]
    [Google Scholar]
  16. Hohn, T. M., McCormick, S. P. & Desjardins, A. E. ( 1993; ). Evidence for a gene cluster involving trichothecene-pathway biosynthetic genes in Fusarium sporotrichioides. Curr Genet 24, 291–295.[CrossRef]
    [Google Scholar]
  17. Keller, N. P. & Hohn, T. M. ( 1997; ). Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21, 17–29.[CrossRef]
    [Google Scholar]
  18. Kimura, M., Kamakura, T., Tao, Q. Z., Kaneko, I. & Yamaguchi, I. ( 1994; ). Cloning of the blasticidin S deaminase gene (BSD) from Aspergillus terreus and its use as a selectable marker for Schizosaccharomyces pombe and Pyricularia oryzae. Mol Gen Genet 242, 121–129.[CrossRef]
    [Google Scholar]
  19. Kimura, M., Kaneko, I., Komiyama, M., Takatsuki, A., Koshino, H., Yoneyama, K. & Yamaguchi, I. ( 1998a; ). Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. Cloning and characterization of Tri101. J Biol Chem 273, 1654–1661.[CrossRef]
    [Google Scholar]
  20. Kimura, M., Matsumoto, G., Shingu, Y., Yoneyama, K. & Yamaguchi, I. ( 1998b; ). The mystery of the trichothecene 3-O-acetyltransferase gene. Analysis of the region around Tri101 and characterization of its homologue from Fusarium sporotrichioides. FEBS Lett 435, 163–168.[CrossRef]
    [Google Scholar]
  21. Kimura, M., Shingu, Y., Yoneyama, K. & Yamaguchi, I. ( 1998c; ). Features of Tri101, the trichothecene 3-O-acetyltransferase gene, related to the self-defense mechanism in Fusarium graminearum. Biosci Biotechnol Biochem 62, 1033–1036.[CrossRef]
    [Google Scholar]
  22. Kimura, M., Anzai, H. & Yamaguchi, I. ( 2001; ). Microbial toxins in plant-pathogen interactions: biosynthesis, resistance mechanisms, and significance. J Gen Appl Microbiol 47, 149–160.[CrossRef]
    [Google Scholar]
  23. Kimura, Y., Nakamori, S. & Takagi, H. ( 2002; ). Polymorphism of the MPR1 gene required for toxic proline analogue resistance in the Saccharomyces cerevisiae complex species. Yeast 19, 1437–1445.[CrossRef]
    [Google Scholar]
  24. Kimura, M., Tokai, T., Matsumoto, G., Fujimura, M., Hamamoto, H., Yoneyama, K., Shibata, T. & Yamaguchi, I. ( 2003a; ). Trichothecene nonproducer Gibberella species have both functional and nonfunctional 3-O-acetyltransferase genes. Genetics 163, 677–684.
    [Google Scholar]
  25. Kimura, M., Tokai, T., O'Donnell, K., Ward, T. J., Fujimura, M., Hamamoto, H., Shibata, T. & Yamaguchi, I. ( 2003b; ). The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Lett 539, 105–110.[CrossRef]
    [Google Scholar]
  26. Klich, M. A., Yu, J., Chang, P. K., Mullaney, E. J., Bhatnagar, D. & Cleveland, T. E. ( 1995; ). Hybridization of genes involved in aflatoxin biosynthesis to DNA of aflatoxigenic and non-aflatoxigenic aspergilli. Appl Microbiol Biotechnol 44, 439–443.[CrossRef]
    [Google Scholar]
  27. Kusumoto, K. I., Yabe, K., Nogata, Y. & Ohta, H. ( 1998; ). Aspergillus oryzae with and without a homolog of aflatoxin biosynthetic gene ver-1. Appl Microbiol Biotechnol 50, 98–104.[CrossRef]
    [Google Scholar]
  28. Lee, T., Oh, D. W., Kim, H. S., Lee, J., Kim, Y. H., Yun, S. H. & Lee, Y. W. ( 2001; ). Identification of deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Appl Environ Microbiol 67, 2966–2972.[CrossRef]
    [Google Scholar]
  29. Lee, T., Han, Y. K., Kim, K. H., Yun, S. H. & Lee, Y. W. ( 2002; ). Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl Environ Microbiol 68, 2148–2154.[CrossRef]
    [Google Scholar]
  30. Mannhaupt, G., Montrone, C., Haase, D. & 8 other authors ( 2003; ). What's in the genome of a filamentous fungus? Analysis of the Neurospora genome sequence. Nucleic Acids Res 31, 1944–1954.[CrossRef]
    [Google Scholar]
  31. McCormick, S. P., Alexander, N. J., Trapp, S. E. & Hohn, T. M. ( 1999; ). Disruption of TRI101, the gene encoding trichothecene 3-O-acetyltransferase, from Fusarium sporotrichioides. Appl Environ Microbiol 65, 5252–5256.
    [Google Scholar]
  32. McCormick, S. P., Harris, L. J., Alexander, N. J., Ouellet, T., Saparno, A., Allard, S. & Desjardins, A. E. ( 2004; ). Tri1 in Fusarium graminearum encodes a P450 oxygenase. Appl Environ Microbiol 70, 2044–2051.[CrossRef]
    [Google Scholar]
  33. Meek, I. B., Peplow, A. W., Ake, C., Jr, Phillips, T. D. & Beremand, M. N. ( 2003; ). Tri1 encodes the cytochrome P450 monooxygenase for C-8 hydroxylation during trichothecene biosynthesis in Fusarium sporotrichioides and resides upstream of another new Tri gene. Appl Environ Microbiol 69, 1607–1613.[CrossRef]
    [Google Scholar]
  34. O'Donnell, K., Kistler, H. C., Tacke, B. K. & Casper, H. H. ( 2000; ). Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Natl Acad Sci U S A 97, 7905–7910.[CrossRef]
    [Google Scholar]
  35. O'Donnell, K., Ward, T. J., Geiser, D. M., Corby Kistler, H. & Aoki, T. ( 2004; ). Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol 41, 600–623.[CrossRef]
    [Google Scholar]
  36. Page, R. D. M. ( 1996; ). TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  37. Peplow, A. W., Meek, I. B., Wiles, M. C., Phillips, T. D. & Beremand, M. N. ( 2003; ). Tri16 is required for esterification of position C-8 during trichothecene mycotoxin production by Fusarium sporotrichioides. Appl Environ Microbiol 69, 5935–5940.[CrossRef]
    [Google Scholar]
  38. Sandrock, R. W., DellaPenna, D. & VanEtten, H. D. ( 1995; ). Purification and characterization of β 2-tomatinase, an enzyme involved in the degradation of a-tomatine and isolation of the gene encoding β 2-tomatinase from Septoria lycopersici. Mol Plant–Microbe Interact 8, 960–970.[CrossRef]
    [Google Scholar]
  39. Strimmer, K. & von Haeseler, A. ( 1996; ). Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13, 964–969.[CrossRef]
    [Google Scholar]
  40. Takitani, S., Asabe, Y., Kato, T., Suzuki, M. & Ueno, Y. ( 1979; ). Spectrodensitometric determination of trichothecene mycotoxins with 4-(p-nitrobenzyl)pyridine on silica gel thin-layer chromatograms. J Chromatogr 172, 335–342.[CrossRef]
    [Google Scholar]
  41. Tanaka, A., Shiotani, H., Yamamoto, M. & Tsuge, T. ( 1999; ). Insertional mutagenesis and cloning of the genes required for biosynthesis of the host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternata. Mol Plant–Microbe Interact 12, 691–702.[CrossRef]
    [Google Scholar]
  42. Thatcher, J. W., Shaw, J. M. & Dickinson, W. J. ( 1998; ). Marginal fitness contributions of nonessential genes in yeast. Proc Natl Acad Sci U S A 95, 253–257.[CrossRef]
    [Google Scholar]
  43. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  44. Trail, F. & Common, R. ( 2000; ). Perithecial development by Gibberella zeae: a light microscopy study. Mycologia 92, 130–138.[CrossRef]
    [Google Scholar]
  45. Vatamaniuk, O. K., Bucher, E. A., Ward, J. T. & Rea, P. A. ( 2001; ). A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 276, 20817–20820.[CrossRef]
    [Google Scholar]
  46. Walton, J. D. ( 2000; ). Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet Biol 30, 167–171.[CrossRef]
    [Google Scholar]
  47. Ward, T. J., Bielawski, J. P., Kistler, H. C., Sullivan, E. & O'Donnell, K. ( 2002; ). Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Natl Acad Sci U S A 99, 9278–9283.[CrossRef]
    [Google Scholar]
  48. Weltring, K. M., Turgeon, B. G., Yoder, O. C. & VanEtten, H. D. ( 1988; ). Isolation of a phytoalexin-detoxification gene from the plant pathogenic fungus Nectria haematococca by detecting its expression in Aspergillus nidulans. Gene 68, 335–344.[CrossRef]
    [Google Scholar]
  49. Wuchiyama, J., Kimura, M. & Yamaguchi, I. ( 2000; ). A trichothecene efflux pump encoded by Tri102 in the biosynthesis gene cluster of Fusarium graminearum. J Antibiot 53, 196–200.[CrossRef]
    [Google Scholar]
  50. Yang, G., Rose, M. S., Turgeon, B. G. & Yoder, O. C. ( 1996; ). A polyketide synthase is required for fungal virulence and production of the polyketide T-toxin. Plant Cell 8, 2139–2150.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27435-0
Loading
/content/journal/micro/10.1099/mic.0.27435-0
Loading

Data & Media loading...

Supplements

Supplementary Fig. S1, analysis of the region containing genes A to O in and ; Supplementary Fig. S2, analysis of trichothecene 3- -acetyltransferase of [PDF file](1568 KB)

PDF

List of hypothetical genes identified on cosmids [PDF file](110 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error