1887

Abstract

The cereal pathogen species complex (e.g. , previously referred to as lineage 6) produces the mycotoxin trichothecene in infected grains. The fungus has a gene for self-defence, , which is responsible for 3--acetylation of the trichothecene skeleton in the biosynthetic pathway. Recently, trichothecene non-producers and (teleomorph ) were shown to have both functional () and non-functional (pseudo-) trichothecene 3--acetyltransferase genes in their genome. To gain insight into the evolution of the trichothecene genes in species, the authors examined whether or not other (pseudo-)biosynthesis-related genes are found near . However, sequence analysis of a 12 kb region containing did not result in identification of additional trichothecene (pseudo-)genes in . In a further attempt to find other trichothecene (pseudo-)genes from the non-producer, the authors examined whether or not the non-trichothecene genes flanking the ends of the core trichothecene gene cluster (i.e. the cluster) comprise a region of synteny in species. However, it was not possible to isolate trichothecene (pseudo-)genes from (in addition to the previously identified pseudo-), because synteny was not observed for this region in and . In contrast to this unsuccessful identification of additional trichothecene (pseudo-)genes in the non-producer, a functional trichothecene 3--acetyltransferase gene could be identified in fusaria other than : and ; and in an ascomycete from a different fungal genus, . Together with the recent functional identification of , these results are suggestive of a different evolutionary origin for the trichothecene 3--acetyltransferase gene from other biosynthesis pathway genes. The phylogeny of the 3--acetyltransferase was mostly concordant with the rDNA species phylogeny of these ascomycetous fungi.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27435-0
2005-02-01
2020-08-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510509.html?itemId=/content/journal/micro/10.1099/mic.0.27435-0&mimeType=html&fmt=ahah

References

  1. Ahn J. H., Walton J. D. 1996; Chromosomal organization of TOX2, a complex locus controlling host-selective toxin biosynthesis in Cochliobolus carbonum. Plant Cell8:887–897[CrossRef]
    [Google Scholar]
  2. Alexander N. J., McCormick S. P., Hohn T. M. 2002; The identification of the Saccharomyces cerevisiae gene AYT1(ORF-YLL063c) encoding an acetyltransferase. Yeast19:1425–1430[CrossRef]
    [Google Scholar]
  3. Ballance D. J. 1986; Sequences important for gene expression in filamentous fungi. Yeast2:229–236[CrossRef]
    [Google Scholar]
  4. Banno S., Kimura M., Tokai T. & 7 other authors. 2003; Cloning and characterization of genes specifically expressed during infection stages in the rice blast fungus. FEMS Microbiol Lett222:221–227[CrossRef]
    [Google Scholar]
  5. Beremand M. N. 1987; Isolation and characterization of mutants blocked in T-2 toxin biosynthesis. Appl Environ Microbiol53:1855–1859
    [Google Scholar]
  6. Bowyer P., Clarke B. R., Lunness P., Daniels M. J., Osbourn A. E. 1995; Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science267:371–374[CrossRef]
    [Google Scholar]
  7. Brown D. W., McCormick S. P., Alexander N. J., Proctor R. H., Desjardins A. E. 2001; A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum. Fungal Genet Biol32:121–133[CrossRef]
    [Google Scholar]
  8. Brown D. W., McCormick S. P., Alexander N. J., Proctor R. H., Desjardins A. E. 2002; Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet Biol36:224–233[CrossRef]
    [Google Scholar]
  9. Brown D. W., Proctor R. H., Dyer R. B., Plattner R. D. 2003; Characterization of a Fusarium 2-gene cluster involved in trichothecene C-8 modification. J Agric Food Chem51:7936–7944[CrossRef]
    [Google Scholar]
  10. Clemens S., Schroeder J. I., Degenkolb T. 2001; Caenorhabditis elegans expresses a functional phytochelatin synthase. Eur J Biochem268:3640–3643[CrossRef]
    [Google Scholar]
  11. Covert S. F., Enkerli J., Miao V. P., VanEtten H. D. 1996; A gene for maackiain detoxification from a dispensable chromosome of Nectria haematococca. Mol Gen Genet251:397–406
    [Google Scholar]
  12. Cundliffe E. 1989; How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol43:207–233[CrossRef]
    [Google Scholar]
  13. Desjardins A. E., Hohn T. M., McCormick S. P. 1993; Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Rev57:595–604
    [Google Scholar]
  14. Glenn A. E., Gold S. E., Bacon C. W. 2002; Fdb1 and Fdb2, Fusarium verticillioides loci necessary for detoxification of preformed antimicrobials from corn. Mol Plant–Microbe Interact 15:91–101[CrossRef]
    [Google Scholar]
  15. Hohn T. M., Beremand P. D. 1989; Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene-producing fungus Fusarium sporotrichioides. Gene79:131–138[CrossRef]
    [Google Scholar]
  16. Hohn T. M., McCormick S. P., Desjardins A. E. 1993; Evidence for a gene cluster involving trichothecene-pathway biosynthetic genes in Fusarium sporotrichioides. Curr Genet24:291–295[CrossRef]
    [Google Scholar]
  17. Keller N. P., Hohn T. M. 1997; Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol21:17–29[CrossRef]
    [Google Scholar]
  18. Kimura M., Kamakura T., Tao Q. Z., Kaneko I., Yamaguchi I. 1994; Cloning of the blasticidin S deaminase gene (BSD) from Aspergillus terreus and its use as a selectable marker forSchizosaccharomyces pombe and Pyricularia oryzae. Mol Gen Genet242:121–129[CrossRef]
    [Google Scholar]
  19. Kimura M., Kaneko I., Komiyama M., Takatsuki A., Koshino H., Yoneyama K., Yamaguchi I. 1998a; Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. Cloning and characterization of Tri101. J Biol Chem 273:1654–1661[CrossRef]
    [Google Scholar]
  20. Kimura M., Matsumoto G., Shingu Y., Yoneyama K., Yamaguchi I. 1998b; The mystery of the trichothecene 3-O-acetyltransferase gene. Analysis of the region around Tri101 and characterization of its homologue fromFusarium sporotrichioides. FEBS Lett435:163–168[CrossRef]
    [Google Scholar]
  21. Kimura M., Shingu Y., Yoneyama K., Yamaguchi I. 1998c; Features of Tri101, the trichothecene 3-O-acetyltransferase gene, related to the self-defense mechanism inFusarium graminearum. Biosci Biotechnol Biochem62:1033–1036[CrossRef]
    [Google Scholar]
  22. Kimura M., Anzai H., Yamaguchi I. 2001; Microbial toxins in plant-pathogen interactions: biosynthesis, resistance mechanisms, and significance. J Gen Appl Microbiol47:149–160[CrossRef]
    [Google Scholar]
  23. Kimura Y., Nakamori S., Takagi H. 2002; Polymorphism of the MPR1 gene required for toxic proline analogue resistance in the Saccharomyces cerevisiae complex species. Yeast19:1437–1445[CrossRef]
    [Google Scholar]
  24. Kimura M., Tokai T., Matsumoto G., Fujimura M., Hamamoto H., Yoneyama K., Shibata T., Yamaguchi I. 2003a; Trichothecene nonproducer Gibberella species have both functional and nonfunctional 3-O-acetyltransferase genes. Genetics163:677–684
    [Google Scholar]
  25. Kimura M., Tokai T., O'Donnell K., Ward T. J., Fujimura M., Hamamoto H., Shibata T., Yamaguchi I. 2003b; The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Lett539:105–110[CrossRef]
    [Google Scholar]
  26. Klich M. A., Yu J., Chang P. K., Mullaney E. J., Bhatnagar D., Cleveland T. E. 1995; Hybridization of genes involved in aflatoxin biosynthesis to DNA of aflatoxigenic and non-aflatoxigenic aspergilli. Appl Microbiol Biotechnol44:439–443[CrossRef]
    [Google Scholar]
  27. Kusumoto K. I., Yabe K., Nogata Y., Ohta H. 1998; Aspergillus oryzae with and without a homolog of aflatoxin biosynthetic genever-1. Appl Microbiol Biotechnol50:98–104[CrossRef]
    [Google Scholar]
  28. Lee T., Oh D. W., Kim H. S., Lee J., Kim Y. H., Yun S. H., Lee Y. W. 2001; Identification of deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Appl Environ Microbiol67:2966–2972[CrossRef]
    [Google Scholar]
  29. Lee T., Han Y. K., Kim K. H., Yun S. H., Lee Y. W. 2002; Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes ofGibberella zeae. Appl Environ Microbiol68:2148–2154[CrossRef]
    [Google Scholar]
  30. Mannhaupt G., Montrone C., Haase D. & 8 other authors. 2003; What's in the genome of a filamentous fungus? Analysis of the Neurospora genome sequence. Nucleic Acids Res31:1944–1954[CrossRef]
    [Google Scholar]
  31. McCormick S. P., Alexander N. J., Trapp S. E., Hohn T. M. 1999; Disruption of TRI101, the gene encoding trichothecene 3-O-acetyltransferase, fromFusarium sporotrichioides. Appl Environ Microbiol65:5252–5256
    [Google Scholar]
  32. McCormick S. P., Harris L. J., Alexander N. J., Ouellet T., Saparno A., Allard S., Desjardins A. E. 2004; Tri1 in Fusarium graminearum encodes a P450 oxygenase. Appl Environ Microbiol70:2044–2051[CrossRef]
    [Google Scholar]
  33. Meek I. B., Peplow A. W., Ake C., Phillips T. D., Beremand M. N. Jr 2003; Tri1 encodes the cytochrome P450 monooxygenase for C-8 hydroxylation during trichothecene biosynthesis inFusarium sporotrichioides and resides upstream of another new Tri gene. Appl Environ Microbiol69:1607–1613[CrossRef]
    [Google Scholar]
  34. O'Donnell K., Kistler H. C., Tacke B. K., Casper H. H. 2000; Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Natl Acad Sci U S A97:7905–7910[CrossRef]
    [Google Scholar]
  35. O'Donnell K., Ward T. J., Geiser D. M., Corby Kistler H., Aoki T. 2004; Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol41:600–623[CrossRef]
    [Google Scholar]
  36. Page R. D. M. 1996; TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci12:357–358
    [Google Scholar]
  37. Peplow A. W., Meek I. B., Wiles M. C., Phillips T. D., Beremand M. N. 2003; Tri16 is required for esterification of position C-8 during trichothecene mycotoxin production byFusarium sporotrichioides. Appl Environ Microbiol69:5935–5940[CrossRef]
    [Google Scholar]
  38. Sandrock R. W., DellaPenna D., VanEtten H. D. 1995; Purification and characterization of β 2-tomatinase, an enzyme involved in the degradation of a-tomatine and isolation of the gene encodingβ 2-tomatinase from Septoria lycopersici. Mol Plant–Microbe Interact8:960–970[CrossRef]
    [Google Scholar]
  39. Strimmer K., von Haeseler A. 1996; Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol13:964–969[CrossRef]
    [Google Scholar]
  40. Takitani S., Asabe Y., Kato T., Suzuki M., Ueno Y. 1979; Spectrodensitometric determination of trichothecene mycotoxins with 4-(p-nitrobenzyl)pyridine on silica gel thin-layer chromatograms. J Chromatogr172:335–342[CrossRef]
    [Google Scholar]
  41. Tanaka A., Shiotani H., Yamamoto M., Tsuge T. 1999; Insertional mutagenesis and cloning of the genes required for biosynthesis of the host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternata. Mol Plant–Microbe Interact12:691–702[CrossRef]
    [Google Scholar]
  42. Thatcher J. W., Shaw J. M., Dickinson W. J. 1998; Marginal fitness contributions of nonessential genes in yeast. Proc Natl Acad Sci U S A95:253–257[CrossRef]
    [Google Scholar]
  43. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680[CrossRef]
    [Google Scholar]
  44. Trail F., Common R. 2000; Perithecial development by Gibberella zeae: a light microscopy study. Mycologia92:130–138[CrossRef]
    [Google Scholar]
  45. Vatamaniuk O. K., Bucher E. A., Ward J. T., Rea P. A. 2001; A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem276:20817–20820[CrossRef]
    [Google Scholar]
  46. Walton J. D. 2000; Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal Genet Biol30:167–171[CrossRef]
    [Google Scholar]
  47. Ward T. J., Bielawski J. P., Kistler H. C., Sullivan E., O'Donnell K. 2002; Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proc Natl Acad Sci U S A99:9278–9283[CrossRef]
    [Google Scholar]
  48. Weltring K. M., Turgeon B. G., Yoder O. C., VanEtten H. D. 1988; Isolation of a phytoalexin-detoxification gene from the plant pathogenic fungus Nectria haematococca by detecting its expression in Aspergillus nidulans. Gene68:335–344[CrossRef]
    [Google Scholar]
  49. Wuchiyama J., Kimura M., Yamaguchi I. 2000; A trichothecene efflux pump encoded by Tri102 in the biosynthesis gene cluster ofFusarium graminearum. J Antibiot53:196–200[CrossRef]
    [Google Scholar]
  50. Yang G., Rose M. S., Turgeon B. G., Yoder O. C. 1996; A polyketide synthase is required for fungal virulence and production of the polyketide T-toxin. Plant Cell8:2139–2150[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27435-0
Loading
/content/journal/micro/10.1099/mic.0.27435-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error