1887

Abstract

The BvgAS two-component system is the master regulator of virulence gene expression in the mammalian pathogens , and . This paper reports the partial cloning and characterization of the loci of the ‘new’ species , and , which are increasingly recognized as opportunistic pathogens in humans. It is demonstrated that the cytoplasmic signalling domains of the BvgS histidine kinases of and are functionally interchangeable, while signal perception by the two sensor proteins seems to be different. Furthermore, it is shown that, despite the high similarity of the BvgA proteins of and , promoter recognition by the response regulator proteins differs substantially in these organisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27432-0
2004-11-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503715.html?itemId=/content/journal/micro/10.1099/mic.0.27432-0&mimeType=html&fmt=ahah

References

  1. Aoyama, T., Murase, Y., Iwata, T., Imaizumi, A., Suzuki, Y. & Sato, Y. ( 1986; ). Comparison of blood-free medium (cyclodextrin solid medium) with Bordet-Gengou medium for clinical isolation of Bordetella pertussis. J Clin Microbiol 23, 1046–1048.
    [Google Scholar]
  2. Arico, B., Miller, J. F., Roy, C., Stibitz, S., Monack, D., Falkow, S., Gross, R. & Rappuoli, R. ( 1989; ). Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc Natl Acad Sci U S A 86, 6671–6675.[CrossRef]
    [Google Scholar]
  3. Bock, A. & Gross, R. ( 2001; ). The BvgAS two-component system of Bordetella spp.: a versatile modulator of virulence gene expression. Int J Med Microbiol 291, 119–130.[CrossRef]
    [Google Scholar]
  4. Bock, A. & Gross, R. ( 2002; ). The unorthodox histidine kinases BvgS and EvgS are responsive to the oxidation status of a quinone electron carrier. Eur J Biochem 269, 3479–3484.[CrossRef]
    [Google Scholar]
  5. Bock, A., Bantscheff, M., Perraud, A. L., Rippe, K., Weiss, V., Glocker, M. O. & Gross, R. ( 2001; ). Rational design and molecular characterization of a chimaeric response regulator protein. J Mol Biol 310, 283–290.[CrossRef]
    [Google Scholar]
  6. Bordet, J. & Gengou, O. ( 1909; ). Le microbe de la coqueluche. Ann Inst Pasteur 20, 731–741.
    [Google Scholar]
  7. Boucher, P. E. & Stibitz, S. ( 1995; ). Synergistic binding of RNA polymerase and BvgA phosphate to the pertussis toxin promoter of Bordetella pertussis. J Bacteriol 177, 6486–6491.
    [Google Scholar]
  8. Boucher, P. E., Murakami, K., Ishihama, A. & Stibitz, S. ( 1997; ). Nature of DNA binding and RNA polymerase interaction of the Bordetella pertussis BvgA transcriptional activator at the fha promoter. J Bacteriol 179, 1755–1763.
    [Google Scholar]
  9. Boucher, P. E., Yang, M. S., Schmidt, D. M. & Stibitz, S. ( 2001; ). Genetic and biochemical analyses of BvgA interaction with the secondary binding region of the fha promoter of Bordetella pertussis. J Bacteriol 183, 536–544.[CrossRef]
    [Google Scholar]
  10. Boucher, P. E., Maris, A. E., Yang, M. S. & Stibitz, S. ( 2003; ). The response regulator BvgA and RNA polymerase alpha subunit C-terminal domain bind simultaneously to different faces of the same segment of promoter DNA. Mol Cell 11, 163–173.[CrossRef]
    [Google Scholar]
  11. Chang, A. C. & Cohen, S. N. ( 1978; ). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134, 1141–1156.
    [Google Scholar]
  12. Cookson, B. T., Vandamme, P., Carlson, L. C., Larson, A. M., Sheffield, J. V., Kersters, K. & Spach, D. H. ( 1994; ). Bacteremia caused by a novel Bordetella species, ‘B. hinzii’. J Clin Microbiol 32, 2569–2571.
    [Google Scholar]
  13. Cormack, B. P., Valdivia, R. H. & Falkow, S. ( 1996; ). FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38.[CrossRef]
    [Google Scholar]
  14. Cotter, P. A. & DiRita, V. J. ( 2000; ). Bacterial virulence gene regulation: an evolutionary perspective. Annu Rev Microbiol 54, 519–565.[CrossRef]
    [Google Scholar]
  15. Dickneite, C., Bockmann, R., Spory, A., Goebel, W. & Sokolovic, Z. ( 1998; ). Differential interaction of the transcription factor PrfA and the PrfA-activating factor (Paf) of Listeria monocytogenes with target sequences. Mol Microbiol 27, 915–928.[CrossRef]
    [Google Scholar]
  16. Gerlach, G., von Wintzingerode, F., Middendorf, B. & Gross, R. ( 2001; ). Evolutionary trends in the genus Bordetella. Microbes Infect 3, 61–72.[CrossRef]
    [Google Scholar]
  17. Gross, R. & Rappuoli, R. ( 1988; ). Positive regulation of pertussis toxin expression. Proc Natl Acad Sci U S A 85, 3913–3917.[CrossRef]
    [Google Scholar]
  18. Gross, R. & Rappuoli, R. ( 1989; ). Pertussis toxin promoter sequences involved in modulation. J Bacteriol 171, 4026–4030.
    [Google Scholar]
  19. Hewlett, E. L. & Cowell, J. L. ( 1989; ). Evaluation of the mouse model for study of encephalopathy in pertussis vaccine recipients. Infect Immun 57, 661–663.
    [Google Scholar]
  20. Karimova, G. & Ullmann, A. ( 1997; ). Characterization of DNA binding sites for the BvgA protein of Bordetella pertussis. J Bacteriol 179, 3790–3792.
    [Google Scholar]
  21. Kattar, M. M., Chavez, J. F., Limaye, A. P. & 7 other authors ( 2000; ). Application of 16S rRNA gene sequencing to identify Bordetella hinzii as the causative agent of fatal septicemia. J Clin Microbiol 38, 789–794.
    [Google Scholar]
  22. Keen, N. T., Tamaki, S., Kobayashi, D. & Trollinger, D. ( 1988; ). Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70, 191–197.[CrossRef]
    [Google Scholar]
  23. Lacey, B. W. ( 1960; ). Antigenic modulation of Bordetella pertussis. J Hyg 58, 57–93.[CrossRef]
    [Google Scholar]
  24. Leslie, P. H. & Gardner, A. D. ( 1931; ). The phases of Haemophilus pertussis. J Hyg 31, 423–434.[CrossRef]
    [Google Scholar]
  25. Marques, R. R. & Carbonetti, N. H. ( 1997; ). Genetic analysis of pertussis toxin promoter activation in Bordetella pertussis. Mol Microbiol 24, 1215–1224.[CrossRef]
    [Google Scholar]
  26. Martinez de Tejada, G., Miller, J. F. & Cotter, P. A. ( 1996; ). Comparative analysis of the virulence control systems of Bordetella pertussis and Bordetella bronchiseptica. Mol Microbiol 22, 895–908.[CrossRef]
    [Google Scholar]
  27. Maxam, A. M. & Gilbert, W. ( 1977; ). A new method for sequencing DNA. Proc Natl Acad Sci U S A 74, 560–564.[CrossRef]
    [Google Scholar]
  28. Mazengia, E., Silva, E. A., Peppe, J. A., Timperi, R. & George, H. ( 2000; ). Recovery of Bordetella holmesii from patients with pertussis-like symptoms: use of pulsed-field gel electrophoresis to characterize circulating strains. J Clin Microbiol 38, 2330–2333.
    [Google Scholar]
  29. Melton, A. R. & Weiss, A. A. ( 1989; ). Environmental regulation of expression of virulence determinants in Bordetella pertussis. J Bacteriol 171, 6206–6212.
    [Google Scholar]
  30. Merkel, T. J., Boucher, P. E., Stibitz, S. & Grippe, V. K. ( 2003; ). Analysis of bvgR expression in Bordetella pertussis. J Bacteriol 185, 6902–6912.[CrossRef]
    [Google Scholar]
  31. Monack, D. M., Arico, B., Rappuoli, R. & Falkow, S. ( 1989; ). Phase variants of Bordetella bronchiseptica arise by spontaneous deletions in the vir locus. Mol Microbiol 3, 1719–1728.[CrossRef]
    [Google Scholar]
  32. Morales, V. M., Backman, A. & Bagdasarian, M. ( 1991; ). A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. Gene 97, 39–47.[CrossRef]
    [Google Scholar]
  33. Morel-Deville, F., Ehrlich, S. D. & Morel, P. ( 1997; ). Identification by PCR of genes encoding multiple response regulators. Microbiology 143, 1513–1520.[CrossRef]
    [Google Scholar]
  34. Njamkepo, E., Delisle, F., Hagege, I., Gerbaud, G. & Guiso, N. ( 2000; ). Bordetella holmesii isolated from a patient with sickle cell anemia: analysis and comparison with other Bordetella holmesii isolates. Clin Microbiol Infect 6, 131–136.[CrossRef]
    [Google Scholar]
  35. Parkhill, J., Sebaihia, M., Preston, A. & 50 other authors ( 2003; ). Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35, 32–40.[CrossRef]
    [Google Scholar]
  36. Parton, R. ( 1999; ). Review of the biology of Bordetella pertussis. Biologicals 27, 71–76.[CrossRef]
    [Google Scholar]
  37. Peppler, M. S. ( 1982; ). Isolation and characterization of isogenic pairs of domed hemolytic and flat nonhemolytic colony types of Bordetella pertussis. Infect Immun 35, 840–851.
    [Google Scholar]
  38. Peppler, M. S. & Schrumpf, M. E. ( 1984; ). Isolation and characterization of Bordetella pertussis phenotype variants capable of growing on nutrient agar: comparison with phases III and IV. Infect Immun 43, 217–223.
    [Google Scholar]
  39. Perraud, A. L., Kimmel, B., Weiss, V. & Gross, R. ( 1998; ). Specificity of the BvgAS and EvgAS phosphorelay is mediated by the C-terminal HPt domains of the sensor proteins. Mol Microbiol 27, 875–887.[CrossRef]
    [Google Scholar]
  40. Sambrook, J. & Russell, D. ( 2000; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  41. Scarlato, V. & Rappuoli, R. ( 1991; ). Differential response of the bvg virulence regulon of Bordetella pertussis to MgSO4 modulation. J Bacteriol 173, 7401–7404.
    [Google Scholar]
  42. Scarlato, V., Prugnola, A., Arico, B. & Rappuoli, R. ( 1990; ). Positive transcriptional feedback at the bvg locus controls expression of virulence factors in Bordetella pertussis. Proc Natl Acad Sci U S A 87, 6753–6757.[CrossRef]
    [Google Scholar]
  43. Scarlato, V., Prugnola, A., Arico, B. & Rappuoli, R. ( 1991; ). The bvg-dependent promoters show similar behaviour in different Bordetella species and share sequence homologies. Mol Microbiol 5, 2493–2498.[CrossRef]
    [Google Scholar]
  44. Shepard, C. W., Daneshvar, M. I., Kaiser, R. M. & 7 other authors ( 2004; ). Bordetella holmesii bacteremia: a newly recognized clinical entity among asplenic patients. Clin Infect Dis 38, 799–804.[CrossRef]
    [Google Scholar]
  45. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology. 1, 784–791.
  46. Skeeles, J. K. & Arp, L. H. ( 1988; ). In Diseases of Poultry, pp. 275–288. Edited by B. W. Calnck and others. Ames, IA: University of Iowa Press.
  47. Spears, P. A., Temple, L. M., Miyamoto, D. M., Maskell, D. J. & Orndorff, P. E. ( 2003; ). Unexpected similarities between Bordetella avium and other pathogenic Bordetellae. Infect Immun 71, 2591–2597.[CrossRef]
    [Google Scholar]
  48. Stainer, D. W. & Scholte, M. J. ( 1970; ). A simple chemically defined medium for the production of phase I Bordetella pertussis. J Gen Microbiol 63, 211–220.[CrossRef]
    [Google Scholar]
  49. Stibitz, S. & Yang, M. S. ( 1991; ). Subcellular localization and immunological detection of proteins encoded by the vir locus of Bordetella pertussis. J Bacteriol 173, 4288–4296.
    [Google Scholar]
  50. Stibitz, S., Aaronson, W., Monack, D. & Falkow, S. ( 1989; ). Phase variation in Bordetella pertussis by frameshift mutation in a gene for a novel two-component system. Nature 338, 266–269.[CrossRef]
    [Google Scholar]
  51. Tang, Y. W., Hopkins, M. K., Kolbert, C. P., Hartley, P. A., Severance, P. J. & Persing, D. H. ( 1998; ). Bordetella holmesii-like organisms associated with septicemia, endocarditis, and respiratory failure. Clin Infect Dis 26, 389–392.[CrossRef]
    [Google Scholar]
  52. Towbin, H., Staehelin, T. & Gordon, J. ( 1979; ). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76, 4350–4354.[CrossRef]
    [Google Scholar]
  53. Uhl, M. A. & Miller, J. F. ( 1996; ). Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. EMBO J 15, 1028–1036.
    [Google Scholar]
  54. Vandamme, P., Heyndrickx, M., Vancanneyt, M., Hoste, B., De Vos, P., Falsen, E., Kersters, K. & Hinz, K. H. ( 1996; ). Bordetella trematum sp. nov., isolated from wounds and ear infections in humans, and reassessment of Alcaligenes denitrificans Rüger and Tan 1983. Int J Syst Bacteriol 46, 849–858.[CrossRef]
    [Google Scholar]
  55. Vandamme, P., Hommez, J., Vancanneyt, M., Monsieurs, M., Hoste, B., Cookson, B., Wirsing von Konig, C. H., Kersters, K. & Blackall, P. J. ( 1995; ). Bordetella hinzii sp. nov., isolated from poultry and humans. Int J Syst Bacteriol 45, 37–45.[CrossRef]
    [Google Scholar]
  56. von Wintzingerode, F., Schattke, A., Siddiqui, R. A., Rösick, U., Göbel, U. B. & Gross, R. ( 2001; ). Bordetella petrii sp. nov., isolated from an anaerobic bioreactor, and emended description of the genus Bordetella. Int J Syst Evol Microbiol 51, 1257–1265.
    [Google Scholar]
  57. von Wintzingerode, F., Gerlach, G., Schneider, B. & Gross, R. ( 2002; ). Phylogenetic relationships and virulence evolution in the genus Bordetella. Curr Top Microbiol Immunol 264, 177–199.
    [Google Scholar]
  58. Weiss, A. A. ( 1992; ). In The Prokaryotes, pp. 2530–2543. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer.
  59. Weiss, A. A. & Falkow, S. ( 1984; ). Genetic analysis of phase change in Bordetella pertussis. Infect Immun 43, 263–269.
    [Google Scholar]
  60. Weiss, A. A., Hewlett, E. L., Myers, G. A. & Falkow, S. ( 1983; ). Tn5-induced mutations affecting virulence factors of Bordetella pertussis. Infect Immun 42, 33–41.
    [Google Scholar]
  61. Weyant, R. S., Hollis, D. G., Weaver, R. E. & 7 other authors ( 1995; ). Bordetella holmesii sp. nov., a new gram-negative species associated with septicemia. J Clin Microbiol 33, 1–7.
    [Google Scholar]
  62. Yih, W. K., Silva, E. A., Ida, J., Harrington, N., Lett, S. M. & George, H. ( 1999; ). Bordetella holmesii-like organisms isolated from Massachusetts patients with pertussis-like symptoms. Emerg Infect Dis 5, 441–443.[CrossRef]
    [Google Scholar]
  63. Zu, T., Manetti, R., Rappuoli, R. & Scarlato, V. ( 1996; ). Differential binding of BvgA to two classes of virulence genes of Bordetella pertussis directs promoter selectivity by RNA polymerase. Mol Microbiol 21, 557–565.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27432-0
Loading
/content/journal/micro/10.1099/mic.0.27432-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error