1887

Abstract

Degradation of technical nonylphenol (t-NP), known as an endocrine-disrupting compound mixture, was assessed, using the mitosporic fungal strain UHH 1-6-18-4 isolated from nonylphenol-contaminated river water, and a strain of the aquatic hyphomycete . GC-MS analysis could resolve 12 peaks attributable to nonyl chain-branched t-NP isomers. All were degraded, to individual extents. Analysis of degradation metabolites suggested intracellular hydroxylation of the nonyl moieties of individual t-NP isomers. Further metabolites also indicated shortening of branched nonyl chains, and 4-hydroxybenzoic acid was identified as a t-NP breakdown product in UHH 1-6-18-4. The t-NP degradation efficiency was higher in UHH 1-6-18-4 than in , and a lower specificity in degradation of individual t-NP constituents in UHH 1-6-18-4 than in was observed. Strain UHH 1-6-18-4 concomitantly produced extracellular laccase under degradation conditions. A mixture of CuSO and vanillic acid considerably enhanced laccase production in both fungi. Laccase preparations derived from UHH 1-6-18-4 and cultures also converted t-NP. Laccase-catalysed transformation of t-NP led to the formation of products with higher molecular masses than that of the parent compound. These results emphasize a role of fungi occurring in aquatic ecosystems in degradation of water contaminants with endocrine activity, which has not previously been considered. Furthermore, the results are in support of two different mechanisms employed by fungi isolated from aquatic environments to initiate t-NP degradation: hydroxylation of individual t-NP isomers at their branched nonyl chains and further breakdown of the alkyl chains of certain isomers; and attack of t-NP by extracellular laccase, the latter leading to oxidative coupling of primary radical products to compounds with higher molecular masses.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27431-0
2005-01-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/1/mic1510045.html?itemId=/content/journal/micro/10.1099/mic.0.27431-0&mimeType=html&fmt=ahah

References

  1. Baldy, V., Chauvet, E., Charcosset, J.-Y. & Gessner, M. O. ( 2002; ). Microbial dynamics associated with leaves decomposing in the mainstem and floodplain pond of a large river. Aquat Microb Ecol 28, 25–26.[CrossRef]
    [Google Scholar]
  2. Bärlocher, F. ( 1992; ). The Ecology of Aquatic Hyphomycetes. Berlin: Springer.
  3. Bourbonnais, R. & Paice, M. G. ( 1990; ). Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267, 99–102.[CrossRef]
    [Google Scholar]
  4. Braun, P., Moeder, M., Schrader, St., Popp, P., Kuschk, P. & Engewald, W. ( 2003; ). Trace analysis of technical nonylphenol, bisphenol A and 17α-ethinylestradiol in wastewater using solid-phase microextraction and gas chromatography-mass spectrometry. J Chromatogr A 988, 41–51.[CrossRef]
    [Google Scholar]
  5. Cerniglia, C. E. & Sutherland, J. B. ( 2001; ). Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi. In Fungi in Bioremediation, pp. 136–187. Edited by G. M. Gadd. Cambridge: Cambridge University Press.
  6. Chang, B. V., Yu, C. H. & Yuan, S. Y. ( 2004; ). Degradation of nonylphenol by anaerobic microorganisms from river sediment. Chemosphere 55, 493–500.[CrossRef]
    [Google Scholar]
  7. Corvini, P. F. X., Vinken, R., Hommes, G., Schmidt, B. & Dohmann, M. ( 2004; ). Degradation of the radioactive and non-labelled branched 4(3′,5′-dimethyl-3′-heptyl)-phenol nonylphenol isomer by Sphingomonas TTNP3. Biodegradation 15, 9–18.[CrossRef]
    [Google Scholar]
  8. Dalton, S. A. & Smith, K. A. ( 1971; ). DDT and river fungi. Trans Br Mycol Soc 58, suppl., 28.
    [Google Scholar]
  9. de Lope, J. L. & Sanchez, J. M. ( 2002; ). Eukaryotic diversity in Spain's river of fire. Nature 417, 137.[CrossRef]
    [Google Scholar]
  10. de Vries, Y. P., Takahara, Y., Ikunaga, Y. & 7 other authors ( 2001; ). Organic nutrient-dependent degradation of branched nonylphenol by Sphingomonas sp. YT isolated from a river sediment sample. Microbes Environ 16, 240–249.[CrossRef]
    [Google Scholar]
  11. Eggert, C., Temp, U., Dean, J. F. D. & Eriksson, K.-E. L. ( 1996; ). A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 391, 144–148.[CrossRef]
    [Google Scholar]
  12. Fujii, K., Urano, N., Ushio, H., Satomi, M. & Kimura, S. ( 2000; ). Profile of a nonylphenol-degrading microflora and its potential for bioremedial applications. J Biochem 128, 909–916.[CrossRef]
    [Google Scholar]
  13. Fujii, K., Urano, N., Ushio, H., Satomi, M. & Kimura, S. ( 2001; ). Sphingomonas cloacae sp. nov., a nonylphenol-degrading bacterium isolated from wastewater of a sewage-treatment plant in Tokyo. Int J Syst Evol Microbiol 51, 603–610.
    [Google Scholar]
  14. Fukuda, T., Uchida, H., Takashima, Y., Uwajima, T., Kawabata, T. & Suzuki, M. ( 2001; ). Degradation of bisphenol A by purified laccase from Trametes villosa. Biochem Biophys Res Commun 284, 704–706.[CrossRef]
    [Google Scholar]
  15. Gams, W. ( 2000; ). Phialophora and some similar morphologically little-differentiated anamorphs of divergent ascomycetes. Stud Mycol 45, 187–199.
    [Google Scholar]
  16. Gesell, M., Hammer, E., Specht, M., Francke, W. & Schauer, F. ( 2001; ). Biotransformation of biphenyl by Paecilomyces lilacinus and characterization of ring cleavage products. Appl Environ Microbiol 67, 1551–1557.[CrossRef]
    [Google Scholar]
  17. He, Y. & Lee, H. K. ( 1996; ). Separation of structural homologues of alkylphenols and isomers of 4-nonylphenol by cyclodextrin-modified micellar electrokinetic chromatography. J Chromatogr A 749, 227–236.[CrossRef]
    [Google Scholar]
  18. Heemken, O. P., Reincke, H., Stachel, B. & Theobald, N. ( 2001; ). The occurence of xenoestrogens in the Elbe river and the North Sea. Chemosphere 45, 249–259.
    [Google Scholar]
  19. Hodkinson, M. ( 1976; ). Interactions between aquatic hyphomycetes and DDT. In Recent Advances in Aquatic Mycology, pp. 447–467. Edited by E. G. B. Jones. London: Paul Elek.
  20. Höfer, C. & Schlosser, D. ( 1999; ). Novel enzymatic oxidation of Mn2+ to Mn3+ catalyzed by a fungal laccase. FEBS Lett 451, 186–190.[CrossRef]
    [Google Scholar]
  21. Hofrichter, M., Bublitz, F. & Fritsche, W. ( 1994; ). Unspecific degradation of halogenated phenols by the soil fungus Penicillium frequentans Bi 7/2. J Basic Microbiol 34, 163–172.[CrossRef]
    [Google Scholar]
  22. Johannes, C. & Majcherczyk, A. ( 2000; ). Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66, 524–528.[CrossRef]
    [Google Scholar]
  23. Kiiskinen, L. L., Viikari, L. & Kruus, K. ( 2002; ). Purification and characterization of a novel laccase from the ascomycete Melanocarpus albomyces. Appl Microb Biotechnol 59, 198–204.[CrossRef]
    [Google Scholar]
  24. Kim, Y.-S., Katase, T., Sekine, S., Inoue, T., Makino, M., Uchiyama, T., Fujimoto, T. & Yamashita, M. ( 2004; ). Variation in estrogenic activity among fractions of a commercial nonylphenol by high performance liquid chromatography. Chemosphere 54, 1127–1134.[CrossRef]
    [Google Scholar]
  25. Kollmann, A., Brault, A., Touton, I., Dubroca, J., Chaplain, V. & Mougin, C. ( 2003; ). Effect of nonylphenol surfactants on fungi following the application of sewage sludge on agricultural soils. J Environ Qual 32, 1269–1276.[CrossRef]
    [Google Scholar]
  26. Kolpin, A. W., Furlong, E. T., Meyer, M. T., Thurmann, E. M., Zaugg, S. D., Barber, L. B. & Buxton, H. T. ( 2002; ). Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36, 1202–1211.[CrossRef]
    [Google Scholar]
  27. Krauss, G., Bärlocher, F., Wennrich, R., Glässer, W. & Krauss, G.-J. ( 2001; ). Aquatic hyphomycetes occur in hyperpolluted waters in Central Germany. Nova Hedwigia 72, 419–428.
    [Google Scholar]
  28. Krauss, G., Bärlocher, F. & Krauss, G.-J. ( 2003a; ). Effect of pollution on aquatic hyphomycetes. In Freshwater Mycology (Fungal Diversity Research Series 10), pp. 211–230. Edited by C. K. M. Tsui & K. D. Hyde. Hong Kong: Fungal Diversity Press.
  29. Krauss, G., Sridhar, K. R., Jung, K., Wennrich, R., Ehrman, J. & Bärlocher, F. ( 2003b; ). Aquatic hyphomycetes in polluted groundwater habitats of Central Germany. Microb Ecol 45, 329–339.
    [Google Scholar]
  30. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  31. Lalah, J. O., Schramm, K.-W., Henkelmann, B., Lenoir, D., Behechti, A., Günther, K. & Kettrup, A. ( 2003; ). The dissipation, distribution and fate of a branched 14C-nonylphenol isomer in lake water/sediment systems. Environ Pollut 122, 195–203.[CrossRef]
    [Google Scholar]
  32. Litvintseva, A. P. & Henson, J. M. ( 2002; ). Cloning, characterization, and transcription of three laccase genes from Gaeumannomyces graminis var. tritici, the take-all fungus. Appl Environ Microbiol 68, 1305–1311.[CrossRef]
    [Google Scholar]
  33. Mc Lafferty, F. W. ( 1980; ). Interpretation of Mass Spectra, 3rd edn. Mill Valley, CA: University Science Books.
  34. Montgomery-Brown, J., Drewes, J. E., Fox, P. & Reinhard, M. ( 2003; ). Behavior of alkylphenol polyethoxylate metabolites during soil aquifer treatment. Water Res 37, 3672–3681.[CrossRef]
    [Google Scholar]
  35. Nakagawa, T., Sugaya, N., Sakurai, K., Nakagawa, J., Usukura, K. & Onda, N. ( 2001; ). A new finding of trimethylsilyl derivatives of 4-alkyl phenols by positive chemical ionization-GC/MS. Anal Sci 17, supplement, 1597–1600.
    [Google Scholar]
  36. Niewolak, S. ( 1975; ). The occurrence of microorganisms in the water of some lakes in the district of Węgorzewo. Acta Hydrobiol 17, 371–390.
    [Google Scholar]
  37. Nikolcheva, L. G. & Bärlocher, F. ( 2004; ). Taxon-specific fungal primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycol Prog 3, 41–50.[CrossRef]
    [Google Scholar]
  38. Nikolcheva, L. G., Cockshutt, A. M. & Bärlocher, F. ( 2003; ). Determining diversity of freshwater fungi on decaying leaves: comparison of traditional and molecular approaches. Appl Environ Microbiol 69, 2548–2554.[CrossRef]
    [Google Scholar]
  39. Palmieri, G., Cennamo, G., Faraco, V., Amoresano, A., Sannia, G. & Giardina, P. ( 2003; ). Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzyme Microb Technol 33, 220–230.[CrossRef]
    [Google Scholar]
  40. Saito, T., Hong, P., Kato, K., Okazaki, M., Inagaki, H., Maeda, S. & Yokogawa, Y. ( 2003; ). Purification and characterization of an extracellular laccase of a fungus (family Chaetomiaceae) isolated from soil. Enzyme Microb Technol 33, 520–526.[CrossRef]
    [Google Scholar]
  41. Sarkar, J. M., Malcolm, R. L. & Bollag, J.-M. ( 1988; ). Enzymatic coupling of 2,4-dichlorophenol to stream fulvic acid in the presence of oxidoreductases. Soil Sci Soc Am J 52, 688–694.[CrossRef]
    [Google Scholar]
  42. Schlosser, D., Grey, R. & Fritsche, W. ( 1997; ). Patterns of ligninolytic enzymes in Trametes versicolor. Distribution of extra- and intracellular enzyme activities during cultivation on glucose, wheat straw and beech wood. Appl Microbiol Biotechnol 47, 412–418.[CrossRef]
    [Google Scholar]
  43. Soares, A., Guieysse, B. & Mattiasson, B. ( 2003; ). Aerobic biodegradation of nonylphenol by cold-adapted bacteria. Biotechnol Lett 25, 731–738.[CrossRef]
    [Google Scholar]
  44. Soden, D. M. & Dobson, A. D. W. ( 2001; ). Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology 147, 1755–1763.
    [Google Scholar]
  45. Sridhar, K. R. & Raviraja, N. S. ( 2001; ). Aquatic hyphomycetes and leaf litter processing in polluted and unpolluted habitats. In Trichomycetes and Other Fungal Groups, pp. 293–314. Edited by J. K. Misra & B. W. Horn. Enfield, NH: Science Publishers.
  46. Stachel, B., Ehrhorn, U., Heemken, O.-P., Lepom, P., Reincke, H., Sawal, G. & Theobald, N. ( 2003; ). Xenoestrogens in the river Elbe and its tributaries. Environ Pollut 124, 497–507.[CrossRef]
    [Google Scholar]
  47. Takahashi, A., Higashitani, T., Yakou, Y., Saitou, M., Tamamoto, H. & Tanaka, H. ( 2003; ). Evaluating bioaccumulation of suspected endocrine disruptors into periphytons and benthos in the Tama river. Water Sci Technol 47, 71–76.
    [Google Scholar]
  48. Tanghe, T., Dhooge, W. & Verstraete, W. ( 1999; ). Isolation of a bacterial strain able to degrade branched nonylphenol. Appl Environ Microbiol 65, 746–751.
    [Google Scholar]
  49. Thibaut, R., Debrauwer, L., Rao, D. & Cravedi, J. P. ( 1999; ). Urinary metabolites of 4-n-nonylphenol in rainbow trout (Oncorhynchus mykiss). Sci Total Environ 233, 193–200.[CrossRef]
    [Google Scholar]
  50. Thurston, C. F. ( 1994; ). The structure and function of fungal laccases. Microbiology 140, 19–26.[CrossRef]
    [Google Scholar]
  51. Tóthová, L. ( 1999; ). Occurrence of mitosporic fungi in the Slovak section of the Danube river. Biologia 54, 379–385.
    [Google Scholar]
  52. Tsutsumi, Y., Haneda, T. & Nishida, T. ( 2001; ). Removal of estrogenic activitites of bisphenol A and nonylphenol by oxidative enzymes from lignin-degrading basidiomycetes. Chemosphere 42, 271–276.[CrossRef]
    [Google Scholar]
  53. Uchida, H., Fukuda, T., Miyamoto, H., Kawabata, T., Suzuki, M. & Uwajima, T. ( 2001; ). Polymerization of bisphenol A by purified laccase from Trametes villosa. Biochem Biophys Res Commun 287, 355–358.[CrossRef]
    [Google Scholar]
  54. Vallini, G., Frassinetti, S., D'Andrea, F., Catelani, G. & Agnolucci, M. ( 2001; ). Biodegradation of 4-(1-nonyl)phenol by axenic cultures of the yeast Candida aquaetextoris: identification of microbial breakdown products and proposal of a possible metabolic pathway. Int Biodeterior Biodegradation 47, 133–140.[CrossRef]
    [Google Scholar]
  55. Webster, J. ( 1992; ). Anamorph–teleomorph relationships. In The Ecology of Aquatic Hyphomycetes, pp. 99–117. Edited by F. Bärlocher. Berlin: Springer.
  56. Wheeler, T. F., Heim, J. R., LaTorre, M. R. & Blair Janes, A. ( 1997; ). Mass spectral characterization of p-nonylphenol isomers using high-resolution capillary GC-MS. J Chromatogr Sci 35, 19–30.[CrossRef]
    [Google Scholar]
  57. Xu, F. ( 1996; ). Oxidation of phenols, anilines and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 35, 7608–7614.[CrossRef]
    [Google Scholar]
  58. Ying, G.-G., Williams, B. & Kookana, R. ( 2002; ). Environmental fate of alkylphenols and alkylphenol ethoxylates – a review. Environ Int 28, 215–226.[CrossRef]
    [Google Scholar]
  59. Yuan, S. Y., Yu, C. H. & Chang, B. V. ( 2004; ). Biodegradation of nonylphenol in river sediment. Environ Int 127, 425–430.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27431-0
Loading
/content/journal/micro/10.1099/mic.0.27431-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error