1887

Abstract

is a zoonotic pathogen and the most common cause of bacterial foodborne diarrhoeal illness worldwide. To establish intestinal colonization prior to either a commensal or pathogenic interaction with the host, will encounter iron-limited niches where there is likely to be intense competition from the host and normal microbiota for iron. To gain a better understanding of iron homeostasis and the role of ferric uptake regulator (Fur) in iron acquisition in , a proteomic and transcriptome analysis of wild-type and mutant strains in iron-rich and iron-limited growth conditions was carried out. All of the proposed iron-transport systems for haemin, ferric iron and enterochelin, as well as the putative iron-transport genes , , , 78 and , were expressed at higher levels in the wild-type strain under iron limitation and in the mutant in iron-rich conditions, suggesting that they were regulated by Fur. Genes encoding a previously uncharacterized ABC transport system () also appeared to be Fur regulated, supporting a role for these genes in iron uptake. Several promoters containing consensus Fur boxes that were identified in a previous bioinformatics search appeared not to be regulated by iron or Fur, indicating that the Fur box consensus needs experimental refinement. Binding of purified Fur to the promoters upstream of the p19, CfrA and CeuB operons was verified using an electrophoretic mobility shift assay (EMSA). These results also implicated Fur as having a role in the regulation of several genes, including fumarate hydratase, that showed decreased expression in response to iron limitation. The known PerR promoters were also derepressed in the Fur mutant, suggesting that they might be co-regulated in response to iron and peroxide stress. These results provide new insights into the effects of iron on metabolism and oxidative stress response as well as the regulatory role of Fur.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27412-0
2005-01-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/1/mic1510243.html?itemId=/content/journal/micro/10.1099/mic.0.27412-0&mimeType=html&fmt=ahah

References

  1. Baig, B. H., Wachsmuth, I. K. & Morris, G. K. ( 1986; ). Utilization of exogenous siderophores by Campylobacter species. J Clin Microbiol 23, 431–433.
    [Google Scholar]
  2. Baillon, M. L., van Vliet, A. H., Ketley, J. M., Constantinidou, C. & Penn, C. W. ( 1999; ). An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni. J Bacteriol 181, 4798–4804.
    [Google Scholar]
  3. Bsat, N., Herbig, A., Casillas-Martinez, L., Setlow, P. & Helmann, J. D. ( 1998; ). Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29, 189–198.[CrossRef]
    [Google Scholar]
  4. Field, L. H., Headley, V. L., Payne, S. M. & Berry, L. J. ( 1986; ). Influence of iron on growth, morphology, outer membrane protein composition, and synthesis of siderophores in Campylobacter jejuni. Infect Immun 54, 126–132.
    [Google Scholar]
  5. Galindo, M. A., Day, W. A., Raphael, B. H. & Joens, L. A. ( 2001; ). Cloning and characterization of a Campylobacter jejuni iron-uptake operon. Curr Microbiol 42, 139–143.
    [Google Scholar]
  6. Guerry, P., Perez-Casal, J., Yao, R., McVeigh, A. & Trust, T. J. ( 1997; ). A genetic locus involved in iron utilization unique to some Campylobacter strains. J Bacteriol 179, 3997–4002.
    [Google Scholar]
  7. Hantke, K. ( 2001; ). Iron and metal regulation in bacteria. Curr Opin Microbiol 4, 172–177.[CrossRef]
    [Google Scholar]
  8. Hassett, D. J., Howell, M. L., Sokol, P. A., Vasil, M. L. & Dean, G. E. ( 1997; ). Fumarase C activity is elevated in response to iron deprivation and in mucoid, alginate-producing Pseudomonas aeruginosa: cloning and characterization of fumC and purification of native FumC. J Bacteriol 179, 1442–1451.
    [Google Scholar]
  9. Herbig, A. F. & Helmann, J. D. ( 2001; ). Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol Microbiol 41, 849–859.
    [Google Scholar]
  10. Horsburgh, M. J., Clements, M. O., Crossley, H., Ingham, E. & Foster, S. J. ( 2001; ). PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect Immun 69, 3744–3754.[CrossRef]
    [Google Scholar]
  11. Howell, M. L., Alsabbagh, E., Ma, J. F. & 10 other authors ( 2000; ). AnkB, a periplasmic ankyrin-like protein in Pseudomonas aeruginosa, is required for optimal catalase B (KatB) activity and resistance to hydrogen peroxide. J Bacteriol 182, 4545–4556.[CrossRef]
    [Google Scholar]
  12. Ishikawa, T., Mizunoe, Y., Kawabata, S., Takade, A., Harada, M., Wai, S. N. & Yoshida, S. ( 2003; ). The iron-binding protein Dps confers hydrogen peroxide stress resistance to Campylobacter jejuni. J Bacteriol 185, 1010–1017.[CrossRef]
    [Google Scholar]
  13. Jacobs-Reitsma, W. F., Maas, H. M. E. & Jansen, W. H. ( 1995; ). Penner serotyping of campylobacter isolates from poultry, with absorbed pooled antisera. J Appl Bacteriol 79, 286–291.[CrossRef]
    [Google Scholar]
  14. Jakubovics, N. S. & Jenkinson, H. F. ( 2001; ). Out of the iron age: new insights into the critical role of manganese homeostasis in bacteria. Microbiology 147, 1709–1718.
    [Google Scholar]
  15. Konkel, M. E., Kim, B. J., Rivera-Amill, V. & Garvis, S. G. ( 1999; ). Bacterial secreted proteins are required for the internalization of Campylobacter jejuni into cultured mammalian cells. Mol Microbiol 32, 691–701.[CrossRef]
    [Google Scholar]
  16. Litwin, C. M. & Calderwood, S. B. ( 1993; ). Role of iron in regulation of virulence genes. Clin Microbiol Rev 6, 137–149.
    [Google Scholar]
  17. Masse, E. & Gottesman, S. ( 2002; ). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 99, 4620–4625.[CrossRef]
    [Google Scholar]
  18. Merrell, D. S., Thompson, L. J., Kim, C. C., Mitchell, H., Tompkins, L. S., Lee, A. & Falkow, S. ( 2003; ). Growth phase-dependent response of Helicobacter pylori to iron starvation. Infect Immun 71, 6510–6525.[CrossRef]
    [Google Scholar]
  19. Nachamkin, I., Allos, B. M. & Ho, T. W. ( 2000; ). Campylobacter jejuni infection and the association with Guillain-Barre syndrome. In Campylobacter, pp. 155–176. Edited by I. Nachamkin & M. J. Blaser. Washington, DC: American Society for Microbiology.
  20. Oberhelman, R. A. & Taylor, D. N. ( 2000; ). Campylobacter infections in developing countries. In Campylobacter, pp. 139–153. Edited by I. Nachamkin & M. J. Blaser. Washington, DC: American Society for Microbiology.
  21. Palyada, K., Threadgill, D. & Stintzi, A. ( 2004; ). Iron acquisition and regulation in Campylobacter jejuni. J Bacteriol 186, 4714–4729.[CrossRef]
    [Google Scholar]
  22. Pappin, D. J. ( 2003; ). Peptide mass fingerprinting using MALDI-TOF mass spectrometry. Methods Mol Biol 211, 211–219.
    [Google Scholar]
  23. Parkhill, J., Wren, B. W., Mungall, K. & 18 other authors ( 2000; ). The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403, 665–668.[CrossRef]
    [Google Scholar]
  24. Paustian, M. L., May, B. J. & Kapur, V. ( 2001; ). Pasteurella multocida gene expression in response to iron limitation. Infect Immun 69, 4109–4115.[CrossRef]
    [Google Scholar]
  25. Pearson, B. M., Pin, C., Wright, J., I'Anson, K., Humphrey, T. & Wells, J. M. ( 2003; ). Comparative genome analysis of Campylobacter jejuni using whole genome DNA microarrays. FEBS Lett 554, 224–230.[CrossRef]
    [Google Scholar]
  26. Pickett, C. L., Auffenberg, T., Pesci, E. C., Sheen, V. L. & Jusuf, S. S. ( 1992; ). Iron acquisition and hemolysin production by Campylobacter jejuni. Infect Immun 60, 3872–3877.
    [Google Scholar]
  27. Raphael, B. H. & Joens, L. A. ( 2003; ). FeoB is not required for ferrous iron uptake in Campylobacter jejuni. Can J Microbiol 49, 727–731.[CrossRef]
    [Google Scholar]
  28. Ratledge, C. & Dover, L. G. ( 2000; ). Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54, 881–941.[CrossRef]
    [Google Scholar]
  29. Richardson, P. T. & Park, S. F. ( 1995; ). Enterochelin acquisition in Campylobacter coli: characterization of components of a binding-protein-dependent transport system. Microbiology 141, 3181–3191.[CrossRef]
    [Google Scholar]
  30. Rock, J. D., van Vliet, A. H. M. & Ketley, J. M. ( 2001; ). Haemin uptake in Campylobacter jejuni. Int J Med Microbiol 291 (S31), 125.
    [Google Scholar]
  31. Sopwith, W., Ashton, M., Frost, J. A., Tocque, K., O'Brien, S., Regan, M. & Syed, Q. ( 2003; ). Enhanced surveillance of campylobacter infection in the North West of England 1997–1999. J Infect 46, 35–45.[CrossRef]
    [Google Scholar]
  32. Tseng, C. P. ( 1997; ). Regulation of fumarase (fumB) gene expression in Escherichia coli in response to oxygen, iron and heme availability: role of the arcA, fur, and hemA gene products. FEMS Microbiol Lett 157, 67–72.[CrossRef]
    [Google Scholar]
  33. Vandamme, P. ( 2000; ). Taxonomy of the family Campylobacteraceae. In Campylobacter. Edited by I. Nachamkin & M. J. Blaser. Washington, DC: American Society for Microbiology.
  34. van Vliet, A. H. M. & Ketley, J. M. ( 2001; ). Pathogenesis of enteric Campylobacter infection. J Appl Microbiol 90, 45S–56S.[CrossRef]
    [Google Scholar]
  35. van Vliet, A. H., Wooldridge, K. G. & Ketley, J. M. ( 1998; ). Iron-responsive gene regulation in a Campylobacter jejuni Fur mutant. J Bacteriol 180, 5291–5298.
    [Google Scholar]
  36. van Vliet, A. H., Baillon, M. L., Penn, C. W. & Ketley, J. M. ( 1999; ). Campylobacter jejuni contains two fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J Bacteriol 181, 6371–6376.
    [Google Scholar]
  37. van Vliet, A. H. M., Rock, J. D., Madeleine, L. N. & Ketley, J. M. ( 2000; ). The iron-responsive regulator Fur of Campylobacter jejuni is expressed from two separate promoters. FEMS Microbiol Lett 188, 115–118.[CrossRef]
    [Google Scholar]
  38. van Vliet, A. H. M., Ketley, J. M., Park, S. F. & Penn, C. W. ( 2002; ). The role of iron in Campylobacter gene regulation, metabolism and oxidative stress defense. FEMS Microbiol Rev 26, 173–186.[CrossRef]
    [Google Scholar]
  39. Wai, S. N., Nakayama, K., Umene, K., Moriya, T. & Amako, K. ( 1996; ). Construction of a ferritin-deficient mutant of Campylobacter jejuni: contribution of ferritin to iron storage and protection against oxidative stress. Mol Microbiol 20, 1127–1134.[CrossRef]
    [Google Scholar]
  40. Wesley, I. V., Wells, S. J., Harmon, K. M., Green, A., Schroeder-Tucker, L., Glover, M. & Siddique, I. ( 2000; ). Fecal shedding of Campylobacter and Arcobacter spp. in dairy cattle. Appl Environ Microbiol 66, 1994–2000.[CrossRef]
    [Google Scholar]
  41. Wooldridge, K. G. & Williams, P. H. ( 1993; ). Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiol Rev 12, 325–348.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27412-0
Loading
/content/journal/micro/10.1099/mic.0.27412-0
Loading

Data & Media loading...

Expt1.IronRichvs.IronLimited.txt 

TEXT

Expt2.11168vs.AV17IronRich.txt 

TEXT

Expt3.11168vs.AV17IronLimited.txt 

TEXT

Supplementary Tables A-C 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error