1887

Abstract

is a Gram-negative bacterium associated with nosocomial infections and cystic fibrosis. Chronic bacterial infections are increasingly associated with the biofilm lifestyle in which microcolonies are embedded in an extracellular matrix. Screening procedures for identifying biofilm-deficient strains have allowed the characterization of several key determinants involved in this process. Biofilm-deficient PAK strains affected in a seven-gene cluster called were characterized. The genes encode proteins with similarity to components involved in polysaccharide biogenesis, of which PelF is a putative glycosyltransferase. PelG was also identified as a putative component of the polysaccharide transporter (PST) family. The genes were previously identified in the PA14 strain as required for the production of a glucose-rich matrix material involved in the formation of a thick pellicle and resistant biofilm. However, in PA14, the mutants have no clear phenotype in the initiation phase of attachment. It was shown that mutations in the PAK strain had little influence on biofilm initiation but, as in PA14, appeared to generate the least robust and mature biofilms. Strikingly, by constructing mutants in a non-piliated PAK strain, an unexpected effect of the mutation in the early phase of biofilm formation was discovered, since it was observed that these mutants were severely defective in the attachment process on solid surfaces. The gene cluster is conserved in other Gram-negative bacteria, and mutation in a homologue, , led to an adherence defect.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27410-0
2005-03-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510985.html?itemId=/content/journal/micro/10.1099/mic.0.27410-0&mimeType=html&fmt=ahah

References

  1. Arora, S. K., Bangera, M., Lory, S. & Ramphal, R. ( 2001; ). A genomic island in Pseudomonas aeruginosa carries the determinants of flagellin glycosylation. Proc Natl Acad Sci U S A 98, 9342–9347.[CrossRef]
    [Google Scholar]
  2. Boucher, C. A., Barberis, P. A., Trigalet, A. P. & Demery, D. A. ( 1985; ). Transposon mutagenesis of Pseudomonas solanacearum: isolation of Tn5-induced avirulent mutants. J Gen Microbiol 131, 2449–2457.
    [Google Scholar]
  3. Castric, P. ( 1995; ). pilO, a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin. Microbiology 141, 1247–1254.[CrossRef]
    [Google Scholar]
  4. Costerton, J. W. ( 2001; ). Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol 9, 50–52.[CrossRef]
    [Google Scholar]
  5. Coutinho, P. M., Deleury, E., Davies, G. J. & Henrissat, B. ( 2003; ). An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328, 307–317.[CrossRef]
    [Google Scholar]
  6. Danese, P. N., Pratt, L. A. & Kolter, R. ( 2000; ). Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182, 3593–3596.[CrossRef]
    [Google Scholar]
  7. Davies, D. G. & Geesey, G. G. ( 1995; ). Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol 61, 860–867.
    [Google Scholar]
  8. Friedman, L. & Kolter, R. ( 2004a; ). Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51, 675–690.
    [Google Scholar]
  9. Friedman, L. & Kolter, R. ( 2004b; ). Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186, 4457–4465.[CrossRef]
    [Google Scholar]
  10. Hvorup, R. N., Winnen, B., Chang, A. B., Jiang, Y., Zhou, X. F. & Saier, M. H., Jr ( 2003; ). The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily. Eur J Biochem 270, 799–813.[CrossRef]
    [Google Scholar]
  11. Jackson, K. D., Starkey, M., Kremer, S., Parsek, M. R. & Wozniak, D. J. ( 2004; ). Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. J Bacteriol 186, 4466–4475.[CrossRef]
    [Google Scholar]
  12. Kang, Y., Liu, H., Genin, S., Schell, M. A. & Denny, T. P. ( 2002; ). Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Mol Microbiol 46, 427–437.[CrossRef]
    [Google Scholar]
  13. Kaniga, K., Delor, I. & Cornelis, G. R. ( 1991; ). A wide-host-range suicide vector for improving reverse genetics in gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene 109, 137–141.[CrossRef]
    [Google Scholar]
  14. Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jorgensen, A., Molin, S. & Tolker-Nielsen, T. ( 2003; ). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48, 1511–1524.[CrossRef]
    [Google Scholar]
  15. Makin, S. A. & Beveridge, T. J. ( 1996; ). The influence of A-band and B-band lipopolysaccharide on the surface characteristics and adhesion of Pseudomonas aeruginosa to surfaces. Microbiology 142, 299–307.[CrossRef]
    [Google Scholar]
  16. Matsukawa, M. & Greenberg, E. P. ( 2004; ). Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 186, 4449–4456.[CrossRef]
    [Google Scholar]
  17. Notredame, C., Higgins, D. G. & Heringa, J. ( 2000; ). T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302, 205–217.[CrossRef]
    [Google Scholar]
  18. O'Toole, G. A. & Kolter, R. ( 1998; ). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30, 295–304.[CrossRef]
    [Google Scholar]
  19. Paulsen, I. T., Beness, A. M. & Saier, M. H., Jr ( 1997; ). Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria. Microbiology 143, 2685–2699.[CrossRef]
    [Google Scholar]
  20. Power, P. M. & Jennings, M. P. ( 2003; ). The genetics of glycosylation in Gram-negative bacteria. FEMS Microbiol Lett 218, 211–222.[CrossRef]
    [Google Scholar]
  21. Romling, U., Sierralta, W. D., Eriksson, K. & Normark, S. ( 1998; ). Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol 28, 249–264.[CrossRef]
    [Google Scholar]
  22. Rosenberg, M., Gutnick, D. & Rosenberg, E. ( 1980; ). Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEBS Microbiol Lett 9, 29–33.[CrossRef]
    [Google Scholar]
  23. Salanoubat, M., Genin, S., Artiguenave, F. & 25 other authors ( 2002; ). Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415, 497–502.[CrossRef]
    [Google Scholar]
  24. Singh, P. K., Schaefer, A. L., Parsek, M. R., Moninger, T. O., Welsh, M. J. & Greenberg, E. P. ( 2000; ). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407, 762–764.[CrossRef]
    [Google Scholar]
  25. Skurnik, M., Peippo, A. & Ervela, E. ( 2000; ). Characterization of the O-antigen gene clusters of Yersinia pseudotuberculosis and the cryptic O-antigen gene cluster of Yersinia pestis shows that the plague bacillus is most closely related to and has evolved from Y. pseudotuberculosis serotype O : 1b. Mol Microbiol 37, 316–330.[CrossRef]
    [Google Scholar]
  26. Smith, R. L., Redd, M. J. & Johnson, A. D. ( 1995; ). The tetratricopeptide repeats of Ssn6 interact with the homeo domain of alpha 2. Genes Dev 9, 2903–2910.[CrossRef]
    [Google Scholar]
  27. Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. ( 2002; ). Biofilms as complex differentiated communities. Annu Rev Microbiol 56, 187–209.[CrossRef]
    [Google Scholar]
  28. Swords, W. E., Moore, M. L., Godzicki, L., Bukofzer, G., Mitten, M. J. & VonCannon, J. ( 2004; ). Sialylation of lipooligosaccharides promotes biofilm formation by nontypeable Haemophilus influenzae. Infect Immun 72, 106–113.[CrossRef]
    [Google Scholar]
  29. Vallet, I., Olson, J. W., Lory, S., Lazdunski, A. & Filloux, A. ( 2001; ). The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci U S A 98, 6911–6916.[CrossRef]
    [Google Scholar]
  30. Watnick, P. I. & Kolter, R. ( 1999; ). Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34, 586–595.[CrossRef]
    [Google Scholar]
  31. Watnick, P. I., Fullner, K. J. & Kolter, R. ( 1999; ). A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol 181, 3606–3609.
    [Google Scholar]
  32. Weissbach, A. & Hurwitz, J. ( 1959; ). The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. I. Identification. J Biol Chem 234, 705–709.
    [Google Scholar]
  33. Wozniak, D. J., Wyckoff, T. J., Starkey, M., Keyser, R., Azadi, P., O'Toole, G. A. & Parsek, M. R. ( 2003; ). Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 100, 7907–7912.[CrossRef]
    [Google Scholar]
  34. Yamaguchi, K., Yu, F. & Inouye, M. ( 1988; ). A single amino acid determinant of the membrane localization of lipoproteins in E. coli. Cell 53, 423–432.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27410-0
Loading
/content/journal/micro/10.1099/mic.0.27410-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error