1887

Abstract

The first comprehensive comparative analysis of lactobacilli was done by comparing the genomes of (3·3 Mb) and (2·0 Mb). is predominantly found in the gastrointestinal tract, while is also found on plants and plant-derived material, and is used in a variety of industrial fermentations. The and chromosomes have only 28 regions with conservation of gene order, totalling about 0·75 Mb; these regions are not co-linear, indicating major chromosomal rearrangements. Metabolic reconstruction indicates many differences between and : numerous enzymes involved in sugar metabolism and in biosynthesis of amino acids, nucleotides, fatty acids and cofactors are lacking in . Major differences were seen in the number and types of putative extracellular proteins, which are of interest because of their possible role in host–microbe interactions. The differences between and , both in genome organization and gene content, are exceptionally large for two bacteria of the same genus, emphasizing the difficulty in taxonomic classification of lactobacilli.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27392-0
2004-11-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503601.html?itemId=/content/journal/micro/10.1099/mic.0.27392-0&mimeType=html&fmt=ahah

References

  1. Ajdić, D., McShan, W. M., McLaughlin, R. E. & 16 other authors ( 2002; ). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99, 14434–14439.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Anthonsen, H. W., Baptista, A., Drablos, F., Martel, P., Petersen, S. B., Sebastiao, M. & Vaz, L. ( 1995; ). Lipases and esterases: a review of their sequences, structure and evolution. Biotechnol Annu Rev 1, 315–371.
    [Google Scholar]
  4. Boeckmann, B., Bairoch, A., Apweiler, R. & 9 other authors ( 2003; ). The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 31, 365–370.[CrossRef]
    [Google Scholar]
  5. Bolotin, A., Wincker, P., Mauger, S., Jaillon, O., Malarme, K., Weissenbach, J., Ehrlich, S. D. & Sorokin, A. ( 2001; ). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11, 731–753.[CrossRef]
    [Google Scholar]
  6. Boneca, I. G., de Reuse, H., Epinat, J. C., Pupin, M., Labigne, A. & Moszer, I. ( 2003; ). A revised annotation and comparative analysis of Helicobacter pylori genomes. Nucleic Acids Res 31, 1704–1714.[CrossRef]
    [Google Scholar]
  7. Braun-Fahrlander, C., Riedler, J., Herz, U. & 12 other authors ( 2002; ). Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 347, 869–877.[CrossRef]
    [Google Scholar]
  8. Busch, W. & Saier, M. H., Jr ( 2002; ). The transporter classification (TC) system, 2002. Crit Rev Biochem Mol Biol 37, 287–337.[CrossRef]
    [Google Scholar]
  9. Dandekar, T., Snel, B., Huynen, M. & Bork, P. ( 1998; ). Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 23, 324–328.[CrossRef]
    [Google Scholar]
  10. Delcher, A. L., Harmon, D., Kasif, S., White, O. & Salzberg, S. L. ( 1999; ). Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27, 4636–4641.[CrossRef]
    [Google Scholar]
  11. Eddy, S. R. ( 1996; ). Hidden Markov models. Curr Opin Struct Biol 6, 361–365.[CrossRef]
    [Google Scholar]
  12. Elli, M., Zink, R., Rytz, A., Reniero, R. & Morelli, L. ( 2000; ). Iron requirement of Lactobacillus spp. in completely chemically defined growth media. J Appl Microbiol 88, 695–703.[CrossRef]
    [Google Scholar]
  13. Fujisawa, T., Benno, Y., Yaeshima, T. & Mitsuoka, T. ( 1992; ). Taxonomic study of the Lactobacillus acidophilus group, with recognition of Lactobacillus gallinarum sp. nov. and Lactobacillus johnsonii sp. nov. and synonymy of Lactobacillus acidophilus group A3 (Johnson et al., 1980) with the type strain of Lactobacillus amylovorus (Nakamura 1981). Int J Syst Bacteriol 42, 487–491.[CrossRef]
    [Google Scholar]
  14. Guan le, L., Hagen, K. E., Tannock, G. W., Korver, D. R., Fasenko, G. M. & Allison, G. E. ( 2003; ). Detection and identification of Lactobacillus species in crops of broilers of different ages by using PCR-denaturing gradient gel electrophoresis and amplified ribosomal DNA restriction analysis. Appl Environ Microbiol 69, 6750–6757.[CrossRef]
    [Google Scholar]
  15. Haller, D., Blum, S., Bode, C., Hammes, W. P. & Schiffrin, E. J. ( 2000a; ). Activation of human peripheral blood mononuclear cells by nonpathogenic bacteria in vitro: evidence of NK cells as primary targets. Infect Immun 68, 752–759.[CrossRef]
    [Google Scholar]
  16. Haller, D., Bode, C., Hammes, W. P., Pfeifer, A. M., Schiffrin, E. J. & Blum, S. ( 2000b; ). Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 47, 79–87.[CrossRef]
    [Google Scholar]
  17. Ibnou-Zekri, N., Blum, S., Schiffrin, E. J. & von der Weid, T. ( 2003; ). Divergent patterns of colonization and immune response elicited from two intestinal Lactobacillus strains that display similar properties in vitro. Infect Immun 71, 428–436.[CrossRef]
    [Google Scholar]
  18. Jankovic, I., Ventura, M., Meylan, V., Rouvet, M., Elli, M. & Zink, R. ( 2003; ). Contribution of aggregation-promoting factor to maintenance of cell shape in Lactobacillus gasseri 4B2. J Bacteriol 185, 3288–3296.[CrossRef]
    [Google Scholar]
  19. Kanehisa, M., Goto, S., Kawashima, S. & Nakaya, A. ( 2002; ). The KEGG databases at GenomeNet. Nucleic Acids Res 30, 42–46.[CrossRef]
    [Google Scholar]
  20. Klaenhammer, T., Altermann, E., Arigoni, F. & 33 other authors ( 2002; ). Discovering lactic acid bacteria by genomics. Antonie Van Leeuwenhoek 82, 29–58.[CrossRef]
    [Google Scholar]
  21. Kleerebezem, M., Boekhorst, J., van Kranenburg, R. & 17 other authors ( 2003; ). Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100, 1990–1995.[CrossRef]
    [Google Scholar]
  22. Klein, G. ( 2003; ). Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastro-intestinal tract. Int J Food Microbiol 88, 123–131.[CrossRef]
    [Google Scholar]
  23. Konstantinidis, K. T. & Tiedje, J. M. ( 2004; ). Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci U S A 101, 3160–3165.[CrossRef]
    [Google Scholar]
  24. Link-Amster, H., Rochat, F., Saudan, K. Y., Mignot, O. & Aeschlimann, J. M. ( 1994; ). Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol Med Microbiol 10, 55–63.[CrossRef]
    [Google Scholar]
  25. Marcotte, E. M., Pellegrini, M., Ng, H. L., Rice, D. W., Yeates, T. O. & Eisenberg, D. ( 1999; ). Detecting protein function and protein–protein interactions from genome sequences. Science 285, 751–753.[CrossRef]
    [Google Scholar]
  26. Meroth, C. B., Walter, J., Hertel, C., Brandt, M. J. & Hammes, W. P. ( 2003; ). Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 69, 475–482.[CrossRef]
    [Google Scholar]
  27. Metzger, R., Brown, D. P., Grealish, P., Staver, M. J., Versalovic, J., Lupski, J. R. & Katz, L. ( 1994; ). Characterization of the macromolecular synthesis (MMS) operon from Listeria monocytogenes. Gene 151, 161–166.[CrossRef]
    [Google Scholar]
  28. Navarre, W. W. & Schneewind, O. ( 1999; ). Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63, 174–229.
    [Google Scholar]
  29. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. ( 1997; ). A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 8, 581–599.[CrossRef]
    [Google Scholar]
  30. Overbeek, R., Fonstein, M., D'Souza, M., Pusch, G. D. & Maltsev, N. ( 1999; ). The use of gene clusters to infer functional coupling. Proc Natl Acad Sci U S A 96, 2896–2901.[CrossRef]
    [Google Scholar]
  31. Page, R. D. ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  32. Pridmore, D., Berger, B., Desiere, F. & 12 other authors ( 2004; ). The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A 101, 2512–2517.[CrossRef]
    [Google Scholar]
  33. Schiex, T., Gouzy, J., Moisan, A. & de Oliveira, Y. ( 2003; ). FrameD: a flexible program for quality check and gene prediction in prokaryotic genomes and noisy matured eukaryotic sequences. Nucleic Acids Res 31, 3738–3741.[CrossRef]
    [Google Scholar]
  34. Shazand, K., Tucker, J., Grunberg-Manago, M., Rabinowitz, J. C. & Leighton, T. ( 1993; ). Similar organization of the nusA-infB operon in Bacillus subtilis and Escherichia coli. J Bacteriol 175, 2880–2887.
    [Google Scholar]
  35. Siezen, R. J., Van Enckevort, F. H., Kleerebezem, M. & Teusink, B. ( 2004; ). Genome data mining of lactic acid bacteria: the impact of bioinformatics. Curr Opin Biotechnol 15, 105–115.[CrossRef]
    [Google Scholar]
  36. Smith, T. F. & Waterman, M. S. ( 1981; ). Identification of common molecular subsequences. J Mol Biol 147, 195–197.[CrossRef]
    [Google Scholar]
  37. Snel, B., Bork, P. & Huynen, M. A. ( 2002; ). The identification of functional modules from the genomic association of genes. Proc Natl Acad Sci U S A 99, 5890–5895.[CrossRef]
    [Google Scholar]
  38. Sonnhammer, E. L. & Durbin, R. ( 1995; ). A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. Gene 167, GC1–GC10.[CrossRef]
    [Google Scholar]
  39. Sonnhammer, E. L., Eddy, S. R., Birney, E., Bateman, A. & Durbin, R. ( 1998; ). Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res 26, 320–322.[CrossRef]
    [Google Scholar]
  40. Sutcliffe, I. C. & Russell, R. R. ( 1995; ). Lipoproteins of Gram-positive bacteria. J Bacteriol 177, 1123–1128.
    [Google Scholar]
  41. Suyama, M. & Bork, P. ( 2001; ). Evolution of prokaryotic gene order: genome rearrangements in closely related species. Trends Genet 17, 10–13.[CrossRef]
    [Google Scholar]
  42. Sybesma, W., Starrenburg, M., Tijsseling, L., Hoefnagel, M. H. & Hugenholtz, J. ( 2003; ). Effects of cultivation conditions on folate production by lactic acid bacteria. Appl Environ Microbiol 69, 4542–4548.[CrossRef]
    [Google Scholar]
  43. Tamames, J. ( 2001; ). Evolution of gene order conservation in prokaryotes. Genome Biol 2, research0020.1–0020.11.
    [Google Scholar]
  44. Tatusov, R. L., Natale, D. A., Garkavtsev, I. V. & 7 other authors ( 2001; ). The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29, 22–28.[CrossRef]
    [Google Scholar]
  45. Tettelin, H., Nelson, K. E., Paulsen, I. T. & 36 other authors ( 2001; ). Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293, 498–506.[CrossRef]
    [Google Scholar]
  46. Tettelin, H., Masignani, V., Cieslewicz, M. J. & 40 other authors ( 2002; ). Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc Natl Acad Sci U S A 99, 12391–12396.[CrossRef]
    [Google Scholar]
  47. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  48. Tillier, E. R. & Collins, R. A. ( 2000; ). Genome rearrangement by replication-directed translocation. Nat Genet 26, 195–197.[CrossRef]
    [Google Scholar]
  49. van Nimwegen, E. ( 2003; ). Scaling laws in the functional content of genomes. Trends Genet 19, 479–484.[CrossRef]
    [Google Scholar]
  50. Vaughan, E. E., de Vries, M. C., Zoetendal, E. G., Ben-Amor, K., Akkermans, A. D. & de Vos, W. M. ( 2002; ). The intestinal LABs. Antonie Van Leeuwenhoek 82, 341–352.[CrossRef]
    [Google Scholar]
  51. Wong, H. & Schotz, M. C. ( 2002; ). The lipase gene family. J Lipid Res 43, 993–999.[CrossRef]
    [Google Scholar]
  52. Wuyts, J., Perriere, G. & Van De Peer, Y. ( 2004; ). The European ribosomal RNA database. Nucleic Acids Res 32, Database issue D101–D103.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27392-0
Loading
/content/journal/micro/10.1099/mic.0.27392-0
Loading

Data & Media loading...

Supplements

vol. , part 11, pp. 3601-3611

The following are available as supplementary data in an Excel spreadsheet with 13 worksheets: details of the size and location of conserved gene clusters in and in Supplementary Table S1; the number of proteins of and for all COG classes in Supplementary Table S2; a KEGG comparison of major differences between and in Supplementary Table S3; and API 50 test results in Supplementary Table S4; the redundancy of enzymes involved in pyruvate metabolism in Supplementary Table S5; gene clusters encoding functionally related proteins present in but not in and vice versa in Supplementary Table S6; lists of proteins unique to either or in Supplementary Tables S7-S12; gene clusters encoding functionally related proteins present in but not in and vice versa in Supplementary Table S13.



EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error