Plasmid p256 from represents a new type of replicon in lactic acid bacteria, and contains a toxin–antitoxin-like plasmid maintenance system Free

Abstract

NC7 harbours a single 7·2 kb plasmid called p256. This report describes the complete nucleotide sequence and annotation of p256, as well as the identification of the minimal replicon of the plasmid. Based on sequence features in the unusually small (0·7 kb) minimal replicon, and the absence of a gene for a replication-relevant protein, p256 seems to represent a hitherto unknown type of theta replicon in lactic acid bacteria (LAB), with a relatively low copy-number. In addition, a putative toxin–antitoxin (TA) locus was identified. Experiments with variants of p256 indicated that the TA system was involved in plasmid maintenance. Furthermore, controlled expression of the TA genes stabilized vectors derived from the p256 replicon. To the authors' knowledge, this is the first time a TA locus with a demonstrated plasmid maintenance function has been identified in LAB. Transformation of several LAB with plasmids derived from p256 indicated that it has a narrow host range. Several effective expression vectors based on the p256 replicon have been constructed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27389-0
2005-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510421.html?itemId=/content/journal/micro/10.1099/mic.0.27389-0&mimeType=html&fmt=ahah

References

  1. Ahrné S., Molin G., Axelsson L. 1992; Transformation of Lactobacillus reuteri with electroporation: studies on the erythromycin resistance plasmid pLUL631. Curr Microbiol 24:199–205 [CrossRef]
    [Google Scholar]
  2. Ahrné S., Nobaek S., Jeppsson B., Adlerberth I., Wold A. E., Molin G. 1998; The normal Lactobacillus flora of healthy human rectal and oral mucosa. J Appl Microbiol 85:88–94 [CrossRef]
    [Google Scholar]
  3. Ajdic D., McShan W. M., McLaughlin R. E. & 16 other authors; 2002; Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99:14434–14439 [CrossRef]
    [Google Scholar]
  4. Aleshin V. V., Semenova E. V., Doroshenko V. G., Jomantas Y. V., Tarakanov B. V., Livshits V. A. 1999; The broad-host-range plasmid pLF1311 from Lactobacillus fermentum VKM1311. FEMS Microbiol Lett 178:47–53 [CrossRef]
    [Google Scholar]
  5. Alpert C. A., Crutz-Le Coq A. M., Malleret C., Zagorec M. 2003; Characterization of a theta-type plasmid from Lactobacillus sakei: a potential basis for low-copy-number vectors in lactobacilli. Appl Environ Microbiol 69:5574–5584 [CrossRef]
    [Google Scholar]
  6. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  7. Aukrust T., Blom H. 1992; Transformation of Lactobacillus strains used in meat and vegetable fermentations. Food Res Intern 25:253–261 [CrossRef]
    [Google Scholar]
  8. Axelsson L., Lindgren S. 1987; Characterization and DNA homology of Lactobacillus strains isolated from pig intestine. J Appl Bacteriol 62:433–438 [CrossRef]
    [Google Scholar]
  9. Axelsson L. T., Andersson M. C, Ahrné S. E. I., Ståhl S. R. 1988; Identification and cloning of a plasmid-encoded erythromycin-resistance determinant from Lactobacillus reuteri . Plasmid 20:171–174 [CrossRef]
    [Google Scholar]
  10. Axelsson L., Holck A., Birkeland S. E., Aukrust T., Blom H. 1993; Cloning and nucleotide sequence of a gene from Lactobacillus sakei Lb706 necessary for sakacin A production and immunity. Appl Environ Microbiol 59:2868–2875
    [Google Scholar]
  11. Axelsson L., Lindstad G., Naterstad K. 2003; Development of an inducible gene expression system for Lactobacillus sakei. Lett Appl Microbiol 37:115–120 [CrossRef]
    [Google Scholar]
  12. Benachour A., Frere J., Flahaut S., Novel G., Auffray Y. 1997; Molecular analysis of the replication region of the theta-replicating plasmid pUCL287 from Tetragenococcus(Pediococcus) halophilus ATCC 33315. Mol Gen Genet 255:504–513 [CrossRef]
    [Google Scholar]
  13. Biet F., Cenatiempo Y., Fremaux C. 2002; Identification of a replicon from pTXL1, a small cryptic plasmid from Leuconostoc mesenteroides subsp.mesenteroides Y110, and development of a food-grade vector. Appl Environ Microbiol 68:6451–6456 [CrossRef]
    [Google Scholar]
  14. Blatny J. M., Brautaset T., Winther-Larsen H. C., Haugan K., Valla S. 1997; Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl Environ Microbiol 63:370–379
    [Google Scholar]
  15. Cocconcelli P. S., Elli M., Riboli B., Morelli L. 1996; Genetic analysis of the replication region of the Lactobacillus plasmid vector pPSC22. Res Microbiol 147:619–624 [CrossRef]
    [Google Scholar]
  16. Cosby W. M., Axelsson L. T., Dobrogosz W. J. 1989; Tn917 transposition in Lactobacillus plantarum using the highly temperature-sensitive plasmid pTV1Ts as a vector. Plasmid 22:236–243 [CrossRef]
    [Google Scholar]
  17. Cuozzo S. A., Sesma F., Palacios J. M., de Ruiz Holgado A. P., Raya R. R. 2000; Identification and nucleotide sequence of genes involved in the synthesis of lactocin 705, a two-peptide bacteriocin from Lactobacillus casei CRL 705. FEMS Microbiol Lett 185:157–161 [CrossRef]
    [Google Scholar]
  18. Daeschel M. D., Andersson R. E., Fleming H. P. 1987; Microbial ecology of fermenting plant materials. FEMS Microbiol Rev 46:357–367 [CrossRef]
    [Google Scholar]
  19. Daming R., Yinyu W., Zilai W., Jun C., Hekui L., Jingye Z. 2003; Complete DNA sequence and analysis of two cryptic plasmids isolated from Lactobacillus plantarum . Plasmid 50:70–73 [CrossRef]
    [Google Scholar]
  20. Danielsen M. 2002; Characterization of the tetracycline-resistance plasmid pMD5057 from Lactobacillus plantarum 5057 reveals a composite structure. Plasmid 48:98–103 [CrossRef]
    [Google Scholar]
  21. del Solar G., Giraldo R., Ruiz-Echevarria M. J., Espinosa M., Diaz-Orejas R. 1998; Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62:434–464
    [Google Scholar]
  22. Derzelle S., Hallet B., Francis K. P., Ferain T., Delcour J., Hols P. 2000; Changes in cspL,cspP, and cspC mRNA abundance as a function of cold shock and growth phase in Lactobacillus plantarum . J Bacteriol 182:5105–5113 [CrossRef]
    [Google Scholar]
  23. Diep D. B., Myhre R., Johnsborg O., Aakra A., Nes I. F. 2003; Inducible bacteriocin production in Lactobacillus is regulated by differential expression of the pln operons and by two antagonizing response regulators, the activity of which is enhanced upon phosphorylation. Mol Microbiol 47:483–494 [CrossRef]
    [Google Scholar]
  24. Emond E., Dion E., Walker S. A., Vedamuthu E. R., Kondo J. K., Moineau S. 1998; AbiQ, an abortive infection mechanism from Lactococcus lactis. Appl Environ Microbiol 64:4748–4756
    [Google Scholar]
  25. Emond E., Lavallee R., Drolet G., Moineau S., LaPointe G. 2001; Molecular characterization of a theta replication plasmid and its use for development of a two-component food-grade cloning system for Lactococcus lactis . Appl Environ Microbiol 67:1700–1709 [CrossRef]
    [Google Scholar]
  26. Gardner M. N., Deane S. M., Rawlings D. E. 2001; Isolation of a new broad-host-range IncQ-like plasmid, pTC-F14, from the acidophilic bacterium Acidithiobacillus caldus and analysis of the plasmid replicon. J Bacteriol 183:3303–3309 [CrossRef]
    [Google Scholar]
  27. Gerdes K. 2000; Toxin–antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J Bacteriol 182:561–572 [CrossRef]
    [Google Scholar]
  28. Graves M. C., Rabinowitz J. C. 1986; In vivo and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. J Biol Chem 261:11409–11415
    [Google Scholar]
  29. Gravesen A., Josephsen J., von Wright A., Vogensen F. K. 1995; Characterization of the replicon from the lactococcal theta-replicating plasmid pJW563. Plasmid 34:105–118 [CrossRef]
    [Google Scholar]
  30. Gryczan T. J., Contente S., Dubnau D. 1978; Characterization of Staphylococcus aureus plasmids introduced by transformation into Bacillus subtilis. J Bacteriol 134:318–329
    [Google Scholar]
  31. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  32. Hammes W. P., Bantleon A., Min S. 1990; Lactic acid bacteria in meat fermentation. FEMS Microbiol Rev 87:165–173 [CrossRef]
    [Google Scholar]
  33. Hanahan D., Jessee J., Bloom F. R. 1991; Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113
    [Google Scholar]
  34. Holo H., Nes I. F. 1989; High-frequency transformation, by electroporation, of Lactococcus lactis subsp.cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123
    [Google Scholar]
  35. Horton R. M., Pease L. R. 1991; Recombination and mutagenesis of DNA sequences using PCR. In Directed Mutagenesis: a Practical Approach pp 217–247 Edited by McPherson M. J. Oxford: IRL Press;
    [Google Scholar]
  36. Jacobs M. F., Tynkkynen S., Sibakov M. 1995; Highly bioluminescent Streptococcus thermophilus strain for the detection of dairy-relevant antibiotics in milk. Appl Microbiol Biotechnol 44:405–412 [CrossRef]
    [Google Scholar]
  37. Johansson M.-L., Molin G., Jeppsson B., Nobaek S., Bengmark S, Ahrné S. 1993; Administration of different Lactobacillus strains in fermented oatmeal soup: in vivo colonization of human intestinal mucosa and effect on the indigenous flora. Appl Environ Microbiol 59:15–20
    [Google Scholar]
  38. Johansson M. L., Nobaek S., Berggren A., Nyman M., Jeppsson B., Molin G, Björck I., Ahrné S. 1998; Survival of Lactobacillus plantarum. DSM 9843:299v and effect on the short-chain fatty acid content of faeces after ingestion of a rose-hip drink with fermented oats. Int J Food Microbiol 42:29–38 [CrossRef]
    [Google Scholar]
  39. Johnsborg O., Diep D. B., Nes I. F. 2003; Structural analysis of the peptide pheromone receptor PlnB, a histidine protein kinase from Lactobacillus plantarum . J Bacteriol 185:6913–6920 [CrossRef]
    [Google Scholar]
  40. Kiewiet R., Kok J., Seegers J. F. M. L., Venema G., Bron S. 1993; The mode of replication is a major factor in segregational instability in Lactococcus lactis . Appl Environ Microbiol 59:358–364
    [Google Scholar]
  41. Kleerebezem M., Boekhorst J., van Kranenburg R. & 17 other authors; 2003; Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100:1990–1995 [CrossRef]
    [Google Scholar]
  42. Leer R. J., Vanluijk N., Posno M., Pouwels P. H. 1992; Structural and functional analysis of two cryptic plasmids from Lactobacillus pentosus MD353 and Lactobacillus plantarum ATCC 8014. Mol Gen Genet 234:265–274 [CrossRef]
    [Google Scholar]
  43. Luchansky J. B., Muriana P. M., Klaenhammer T. R. 1988; Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus and Propionibacterium. Mol Microbiol 2:637–646 [CrossRef]
    [Google Scholar]
  44. Mathiesen G., Sørvig E., Blatny J., Naterstad K., Axelsson L., Eijsink V. G. H. 2004; High-level gene expression in Lactobacillus plantarum using a pheromone-regulated bacteriocin promoter. Lett Appl Microbiol 39:137–143 [CrossRef]
    [Google Scholar]
  45. Meijer W. J., de Boer A. J., van Tongeren S., Venema G., Bron S. 1995; Characterization of the replication region of the Bacillus subtilis plasmid pLS20: a novel type of replicon. Nucleic Acids Res 23:3214–3223 [CrossRef]
    [Google Scholar]
  46. Motlagh A., Bukhtiyarova M., Ray B. 1994; Complete nucleotide sequence of pSMB 74, a plasmid encoding the production of pediocin AcH in Pediococcus acidilactici. Lett Appl Microbiol 18:305–312 [CrossRef]
    [Google Scholar]
  47. Nicoloff H., Bringel F. 2003; ISLpl1 is a functional IS30-related insertion element in Lactobacillus plantarum that is also found in other lactic acid bacteria. Appl Environ Microbiol 69:6032–6040 [CrossRef]
    [Google Scholar]
  48. Nordstrom K., Austin S. J. 1989; Mechanisms that contribute to the stable segregation of plasmids. Annu Rev Genet 23:37–69 [CrossRef]
    [Google Scholar]
  49. Paulsen I. T., Banerjei L., Myers G. S. & 29 other authors; 2003; Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299:2071–2074 [CrossRef]
    [Google Scholar]
  50. Pouwels P. H., Leer R. J. 1993; Genetics of lactobacilli: plasmids and gene expression. Antonie Van Leeuwenhoek 64:85–107
    [Google Scholar]
  51. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  52. Seegers J. F., van Sinderen D., Fitzgerald G. F. 2000; Molecular characterization of the lactococcal plasmid pCIS3: natural stacking of specificity subunits of a type I restriction/modification system in a single lactococcal strain. Microbiology 146:435–443
    [Google Scholar]
  53. Shrago A. W., Chassy B. M., Dobrogosz W. J. 1986; Conjugal plasmid transfer (pAMβ1) in Lactobacillus plantarum. Appl Environ Microbiol 52:574–576
    [Google Scholar]
  54. Skaugen M. 1989; Complete nucleotide sequence of a small cryptic plasmid from Lactobacillus plantarum. Plasmid 22:175–179 [CrossRef]
    [Google Scholar]
  55. Sørvig E., Grønqvist S., Naterstad K., Mathiesen G., Eijsink V. G., Axelsson L. 2003; Construction of vectors for inducible gene expression in Lactobacillus sakei and L. plantarum . FEMS Microbiol Lett 229:119–126 [CrossRef]
    [Google Scholar]
  56. Trieu-Cuot P., de Cespedes G., Horaud T. 1992; Nucleotide sequence of the chloramphenicol resistance determinant of the streptococcal plasmid pIP501. Plasmid 28:272–276 [CrossRef]
    [Google Scholar]
  57. Tsuchimoto S., Ohtsubo H., Ohtsubo E. 1988; Two genes, pemK and pemI, responsible for stable maintenance of resistance plasmid R100. J Bacteriol 170:1461–1466
    [Google Scholar]
  58. Varmanen P., Rantanen T., Palva A., Tynkkynen S. 1998; Cloning and characterization of a prolinase gene (pepR) from Lactobacillus rhamnosus. Appl Environ Microbiol 64:1831–1836
    [Google Scholar]
  59. Von Wright A., Tynkkynen S., Suominen M. 1987; Cloning of a Streptococcus lactis subsp.lactis chromosomal fragment associated with the ability to grow in milk. Appl Environ Microbiol 53:1584–1588
    [Google Scholar]
  60. Vujcic M., Topisirovic L. 1993; Molecular analysis of the rolling-circle replicating plasmid pA1 of Lactobacillus plantarum A112. Appl Environ Microbiol 59:274–280
    [Google Scholar]
  61. Wyckoff H. A., Barnes M., Gillies K. O., Sandine W. E. 1996; Characterization and sequence analysis of a stable cryptic plasmid from Enterococcus faecium 226 and development of a stable cloning vector. Appl Environ Microbiol 62:1481–1486
    [Google Scholar]
  62. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
  63. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27389-0
Loading
/content/journal/micro/10.1099/mic.0.27389-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed