Protease susceptibility of the flagellar hook–basal body: a possible mechanism of flagellar ejection during cell differentiation Free

Abstract

When motile swarmer cells of differentiate into sessile stalked cells, the flagellum is ejected. To elucidate the molecular mechanism of the flagellar ejection, flagellar hook–basal body (HBB) complexes from were purified and characterized. The purified HBBs were less stable against acidic pH or protease treatment than HBBs of , supporting the view that flagellar ejection from is initiated by destruction of the fragile basal structures. In addition, protease treatment of the purified flagella resulted in the specific digestion of the MS ring complex, revealing for the first time the intact structure of the whole rod.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27386-0
2005-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/2/mic1510433.html?itemId=/content/journal/micro/10.1099/mic.0.27386-0&mimeType=html&fmt=ahah

References

  1. Aizawa S.-I., Dean G. E., Jones C. J., Macnab R. M., Yamaguchi S. 1985; Purification and characterization of the flagellar hook-basal body complex of Salmonella typhimurium . J Bacteriol 161:836–849
    [Google Scholar]
  2. Aldridge P., Jenal U. 1999; Cell cycle-dependent degradation of a flagellar motor component requires a novel-type response regulator. Mol Microbiol 32:379–391 [CrossRef]
    [Google Scholar]
  3. Aldridge P., Paul R., Goymer P., Rainey P., Jenal U. 2003; Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol Microbiol 47:1695–1708 [CrossRef]
    [Google Scholar]
  4. DePamphilis M. L., Adler J. 1971; Fine structure and isolation of the hook-basal body complex of flagella from Escherichia coli and Bacillus subtilis . J Bacteriol 105:384–395
    [Google Scholar]
  5. Ely B., Ely T. W., Crymes W. B. Jr, Minnich S. A. 2000; A family of six flagellin genes contributes to the Caulobacter crescentus flagellar filament. J Bacteriol 182:5001–5004 [CrossRef]
    [Google Scholar]
  6. Jenal U., Shapiro L. 1996; Cell cycle-controlled proteolysis of a flagellar motor protein that is asymmetrically distributed in the Caulobacter predivisional cell. EMBO J 15:2393–2406
    [Google Scholar]
  7. Judd E. M., Ryan K. R., Moerner W. E., Shapiro L., McAdams H. H. 2003; Fluorescence bleaching reveals asymmetric compartment formation prior to cell division in Caulobacter. Proc Natl Acad Sci U S A 100:8235–8240 [CrossRef]
    [Google Scholar]
  8. Kobayashi K., Saitoh T., Shah D. S. H., Ohnishi K., Goodfellow I. G., Sockett R. E., Aizawa S.-I. 2003; Purification and characterization of the flagellar basal body of Rhodobacter sphaeroides . J Bacteriol 185:5295–5300 [CrossRef]
    [Google Scholar]
  9. Kubori T., Okumura M., Kobayashi N., Nakamura D., Iwakura M., Aizawa S.-I. 1997; Purification and characterization of the flagellar hook-basal body complex of Bacillus subtilis. Mol Microbiol 24:399–410 [CrossRef]
    [Google Scholar]
  10. Paul R., Weiser S., Amiot N. C., Chan C., Schirmer T., Giese B., Jenal U. 2004; Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18:715–727 [CrossRef]
    [Google Scholar]
  11. Schoenhals G. L., Macnab R. M. 1996; Physiological and biochemical analysis of FlgH, a lipoprotein forming the outer membrane L ring of the flagellar basal body of Salmonella typhimurium . J Bacteriol 178:4200–4207
    [Google Scholar]
  12. Shapiro L., Maizel J. 1973; Synthesis and structure of Caulobacter crescentus flagella. J Bacteriol 113:478–485
    [Google Scholar]
  13. Stallmeyer M. J. B., Hahnenberger K., Sosinsky G. E., Shapiro L., DeRosier D. J. 1989; Image reconstruction of the flagellar basal body of Caulobacter crescentus . J Mol Biol 205:511–518 [CrossRef]
    [Google Scholar]
  14. Stephens C., Reisenauer A., Wright R., Shapiro L. 1996; A cell cycle-regulated bacterial DNA methyltransferase is essential for viability. Proc Natl Acad Sci U S A 93:1210–1214 [CrossRef]
    [Google Scholar]
  15. Ueno T., Oosawa K., Aizawa S.-I. 1992; The M ring, S ring and proximal rod of the flagellar basal body of Salmonella typhimurium are composed of subunits of a single protein. FliF. J Mol Biol 227:672–677 [CrossRef]
    [Google Scholar]
  16. Ueno T. K., Oosawa, Aizawa S.-I. 1994; Domain structures of the MS ring component protein (FliF) of the flagellar basal body of. Salmonella typhimurium J Mol Biol 235:546–555
    [Google Scholar]
  17. Wu J., Newton A. 1997; Regulation of the Caulobacter flagellar gene hierarchy; not just for motility. Mol Microbiol 24:233–239 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27386-0
Loading
/content/journal/micro/10.1099/mic.0.27386-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed