1887

Abstract

The phenotypes of three different strains – wild-type, nitrite reductase (NirK)-deficient and nitric oxide reductase (NorB)-deficient strains – were characterized in chemostat cell cultures, and the effect of nitric oxide (NO) on metabolic activities was evaluated. All strains revealed similar aerobic ammonia oxidation activities, but the growth rates and yields of the knock-out mutants were significantly reduced. Dinitrogen (N) was the main gaseous product of the wild-type, produced via its denitrification activity. The mutants were unable to reduce nitrite to N, but excreted more hydroxylamine leading to the formation of almost equal amounts of NO, nitrous oxide (NO) and N by chemical auto-oxidation and chemodenitrification of hydroxylamine. Under anoxic conditions wild-type gains energy for growth via nitrogen dioxide (NO)-dependent ammonia oxidation or hydrogen-dependent denitrification using nitrite as electron acceptor. The mutant strains were restricted to NO and/or NO as electron acceptor and consequently their growth rates and yields were much lower compared with the wild-type. When cells were transferred from anoxic (denitrification) to oxic conditions, the wild-type strain endogenously produced NO and recovered ammonia oxidation within 8 h. In contrast, the mutant strains remained inactive. For recovery of ammonia oxidation activity the NO concentration had to be adjusted to about 10 p.p.m. in the aeration gas.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27382-0
2004-12-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/12/mic1504107.html?itemId=/content/journal/micro/10.1099/mic.0.27382-0&mimeType=html&fmt=ahah

References

  1. Abeliovich, A. & Vonshak, A. ( 1992; ). Anaerobic metabolism of Nitrosomonas europaea. Arch Microbiol 158, 267–270.[CrossRef]
    [Google Scholar]
  2. Beaumont, H. J. E., Hommes, N. G., Sayavedra-Soto, L. A., Arp, D. J., Arciero, D. M., Hooper, A. B., Westerhoff, H. V. & van Spanning, R. J. M. ( 2002; ). Nitrite reductase of Nitrosomonas europaea is not essential for production of gaseous nitrogen oxides and confers tolerance to nitrite. J Bacteriol 184, 2557–2560.[CrossRef]
    [Google Scholar]
  3. Beaumont, H. J. E., van Schooten, B., Lens, S. I., Westerhoff, H. V. & van Spanning, R. J. M. ( 2004; ). Nitrosomonas europaea expresses a nitric oxide reductase during nitrification. J Bacteriol 186, 4417–4421.[CrossRef]
    [Google Scholar]
  4. Bock, E., Schmidt, I., Stüven, R. & Zart, D. ( 1995; ). Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch Microbiol 163, 16–20.[CrossRef]
    [Google Scholar]
  5. Bodelier, P. L. E., Libochant, J. A., Blom, C. W. P. M. & Laanbroek, H. J. ( 1996; ). Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats. Appl Environ Microbiol 62, 4100–4107.
    [Google Scholar]
  6. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein, utilizing the principle of protein–dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  7. Chain, P., Lamerdin, J., Larimer, F. & 12 other authors ( 2003; ). Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 185, 2759–2773.[CrossRef]
    [Google Scholar]
  8. Chalk, P. M. & Smith, C. J. ( 1983; ). Chemodenitrification. Dev Plant Soil Sci 9, 65–89.
    [Google Scholar]
  9. Goreau, T. J., Kaplan, W. A., Wofsy, S. C., McElroy, M. B., Valois, F. W. & Watson, S. W. ( 1980; ). Production of NO2 and N2O by nitrifying bacteria at reduced concentration of oxygen. Appl Environ Microbiol 40, 526–532.
    [Google Scholar]
  10. Hooper, A. B. ( 1968; ). A nitrite-reducing enzyme from Nitrosomonas europaea. Preliminary characterization with hydroxylamine as electron donor. Biochim Biophys Acta 162, 49–65.[CrossRef]
    [Google Scholar]
  11. Kester, R. A., de Boer, W. & Laanbroek, H. J. ( 1997; ). Production of NO and N2O by pure cultures of nitrifying and denitrifying bacteria during changes in aeration. Appl Environ Microbiol 63, 3872–3877.
    [Google Scholar]
  12. Miller, D. J. & Nicholas, D. J. D. ( 1985; ). Characterization of a soluble cytochrome oxidase/nitrite reductase from Nitrosomonas europaea. J Gen Microbiol 131, 2851–2854.
    [Google Scholar]
  13. Poth, M. ( 1986; ). Dinitrogen production from nitrite by a Nitrosomonas isolate. Appl Environ Microbiol 52, 957–959.
    [Google Scholar]
  14. Poth, M. & Focht, D. D. ( 1985; ). 15N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification. Appl Environ Microbiol 49, 1134–1141.
    [Google Scholar]
  15. Rees, M. & Nason, A. ( 1966; ). Incorporation of atmospheric oxygen into nitrite formed during ammonia oxidation by Nitrosomonas europaea. Biochim Biophys Acta 113, 398–401.[CrossRef]
    [Google Scholar]
  16. Risgaard-Petersen, N., Rysgaard, S. & Revsbech, N. P. ( 1995; ). A combined microdiffusion-hypobromite oxidation method for determination of 15N isotope in NH4 +. Soil Sci Soc Am J 59, 1077–1080.[CrossRef]
    [Google Scholar]
  17. Schmidt, I. & Bock, E. ( 1997; ). Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch Microbiol 167, 106–111.[CrossRef]
    [Google Scholar]
  18. Schmidt, I. & Bock, E. ( 1998; ). Anaerobic ammonia oxidation by cell-free extracts of Nitrosomonas eutropha. Antonie van Leeuwenhoek 73, 271–278.[CrossRef]
    [Google Scholar]
  19. Schmidt, I., Bock, E. & Jetten, M. S. M. ( 2001a; ). Ammonia oxidation by Nitrosomonas eutropha with NO2 as oxidant is not inhibited by acetylene. Microbiology 147, 2247–2253.
    [Google Scholar]
  20. Schmidt, I., Zart, D. & Bock, E. ( 2001b; ). Gaseous NO2 as a regulator for ammonia oxidation of Nitrosomonas eutropha. Antonie van Leeuwenhoek 79, 311–318.[CrossRef]
    [Google Scholar]
  21. Schmidt, I., Zart, D. & Bock, E. ( 2001c; ). Effects of gaseous NO2 on cells of Nitrosomonas eutropha previously incapable of using ammonia as an energy source. Antonie van Leeuwenhoek 79, 39–47.[CrossRef]
    [Google Scholar]
  22. Schmidt, I., Steenbakkers, P. J. M., op den Camp, H. J. M., Schmidt, K. & Jetten, M. S. M. ( 2004; ). Physiologic and proteomic evidence for a role of nitric oxide in biofilm formation by Nitrosomonas europaea and other ammonia oxidizers. J Bacteriol 186, 2781–2788.[CrossRef]
    [Google Scholar]
  23. Slater, T. F. & Sawyer, B. ( 1962; ). A colorimetric method for estimating the pyridine nucleotide content of small amounts of animal tissue. Nature 193, 454–456.[CrossRef]
    [Google Scholar]
  24. Stein, L. Y. & Arp, D. J. ( 1998; ). Loss of ammonia monooxygenase activity in Nitrosomonas europaea upon exposure to nitrite. Appl Environ Microbiol 64, 4098–4102.
    [Google Scholar]
  25. Strehler, B. L. J. & Trotter, J. R. ( 1952; ). Firefly luminescence in the study of energy transfer mechanism. I. Substrate and enzyme determination. Arch Biochem Biophys 40, 28–41.[CrossRef]
    [Google Scholar]
  26. Uemoto, H. & Saiki, H. ( 2000; ). Distribution of Nitrosomonas europaea and Paracoccus denitrificans immobilized in tubular polymeric gel for nitrogen removal. Appl Environ Microbiol 66, 816–819.[CrossRef]
    [Google Scholar]
  27. van de Graaf, A. A., de Bruijn, P., Robertson, L. A., Jetten, M. S. M. & Kuenen, J. G. ( 1996; ). Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142, 2187–2196.[CrossRef]
    [Google Scholar]
  28. Verstraete, W. & Alexander, M. ( 1972; ). Heterotrophic nitrification by Arthrobacter sp. J Bacteriol 110, 955–961.
    [Google Scholar]
  29. Whittaker, M., Bergmann, D., Arciero, D. & Hooper, A. B. ( 2000; ). Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. Biochim Biophys Acta 1459, 346–355.[CrossRef]
    [Google Scholar]
  30. Wink, D. A. & Mitchell, J. B. ( 1998; ). Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25, 434–456.[CrossRef]
    [Google Scholar]
  31. Zart, D. & Bock, E. ( 1998; ). High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass retention in the presence of gaseous NO2 or NO. Arch Microbiol 169, 282–286.[CrossRef]
    [Google Scholar]
  32. Zart, D., Schmidt, I. & Bock, E. ( 2000; ). Significance of gaseous NO for ammonia oxidation by Nitrosomonas eutropha. Antonie van Leeuwenhoek 77, 49–55.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27382-0
Loading
/content/journal/micro/10.1099/mic.0.27382-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error