is a gliding bacterium that possesses two motility systems, the adventurous (A-motility) and social (S-motility) systems. A-motility is used for individual cell gliding, while S-motility is used for gliding in multicellular groups. Video microscopy studies showed that cells are non-motile on agar surfaces, suggesting that the gene product is absolutely required for both A-motility and S-motility under these assay conditions. S-motility requires functional type IV pili, wild-type LPS O-antigen, and an extracellular matrix of exopolysaccharide (EPS) and protein called fibrils. The results of expression studies and tethering assays indicate that the mutant has functional type IV pili. The mutant also produces wild-type LPS. However, several lines of evidence suggest that the mutant is defective for production of the EPS portion of the fibril matrix. The mutant is also defective for transcription of two genes ( and ) known to be required for A-motility, which is consistent with the idea that cells are defective for A-motility. Based on these findings, it is proposed that the putative transcriptional activator Nla24 regulates a subset of genes that are important for A-motility and S-motility in .


Article metrics loading...

Loading full text...

Full text loading...



  1. Apicella, M. A., Griffiss, J. M. & Schneider, H.(1994). Isolation and characterization of lipopolysaccharides, lipooligosaccharides, and lipid A. Methods Enzymol 235, 242–252. [Google Scholar]
  2. Arnold, J. W. & Shimkets, L. J.(1988a). Inhibition of cell–cell interactions in Myxococcus xanthus by Congo red. J Bacteriol 170, 5765–5770. [Google Scholar]
  3. Arnold, J. W. & Shimkets, L. J.(1988b). Cell surface properties correlated with cohesion in Myxococcus xanthus. J Bacteriol 170, 5771–5777. [Google Scholar]
  4. Behmlander, R. M. & Dworkin, M.(1991). Extracellular fibrils and contact-mediated cell interactions in Myxococcus xanthus. J Bacteriol 173, 7810–7821. [Google Scholar]
  5. Behmlander, R. M. & Dworkin, M.(1994a). Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J Bacteriol 176, 6295–6303. [Google Scholar]
  6. Behmlander, R. M. & Dworkin, M.(1994b). Integral proteins of the extracellular matrix fibrils of Myxococcus xanthus. J Bacteriol 176, 6304–6311. [Google Scholar]
  7. Black, W. P. & Yang, Z.(2004).Myxococcus xanthus chemotaxis homologs DifD and DifG negatively regulate fibril polysaccharide production. J Bacteriol 186, 1001–1008.[CrossRef] [Google Scholar]
  8. Blackhart, B. D. & Zusman, D. R.(1985). ‘Frizzy’ genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility. Proc Natl Acad Sci U S A 82, 8767–8770.[CrossRef] [Google Scholar]
  9. Bowden, M. G. & Kaplan, H. B.(1998). The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Mol Microbiol 30, 275–284.[CrossRef] [Google Scholar]
  10. Caberoy, N. B., Welch, R. D., Jakobsen, J. S., Slater, S. C. & Garza, A. G.(2003). Global mutational analysis of NtrC-like activators in Myxococcus xanthus: identifying activator mutants defective for motility and fruiting body development. J Bacteriol 185, 6083–6094.[CrossRef] [Google Scholar]
  11. Dana, J. R. & Shimkets, L. J.(1993). Regulation of cohesion-dependent cell interactions in Myxococcus xanthus. J Bacteriol 175, 3636–3647. [Google Scholar]
  12. Dworkin, M.(1999). Fibrils as extracellular appendages of bacteria: their role in contact- mediated cell–cell interactions in Myxococcus xanthus. Bioessays 21, 590–595.[CrossRef] [Google Scholar]
  13. Dworkin, M. & Kaiser, D.(1993).Myxobacteria II. Washington, DC: American Society for Microbiology.
  14. Hodgkin, J. & Kaiser, D.(1979a). Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): genes controlling movement of single cells. Mol Gen Genet 171, 167–176.[CrossRef] [Google Scholar]
  15. Hodgkin, J. & Kaiser, D.(1979b). Genetics of gliding motility in Myxococcus xanthus: two gene systems control movement. Mol Gen Genet 171, 177–191.[CrossRef] [Google Scholar]
  16. Hoiczyk, E.(2000). Gliding motility in cyanobacteria: observations and possible explanations. Arch Microbiol 174, 11–17.[CrossRef] [Google Scholar]
  17. Hoiczyk, E. & Baumeister, W.(1998). The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria. Curr Biol 8, 1161–1168.[CrossRef] [Google Scholar]
  18. Kaiser, D.(1979). Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci U S A 76, 5952–5956.[CrossRef] [Google Scholar]
  19. Kaiser, D.(2000). Bacterial motility: how do pili pull? Curr Biol 10, 777–780.[CrossRef] [Google Scholar]
  20. Laemmli, U. K.(1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef] [Google Scholar]
  21. Lancero, H., Brofft, J. E., Downard, J., Birren, B. W., Nusbaum, C., Naylor, J., Shi, W. & Shimkets, L. J.(2002). Mapping of Myxococcus xanthus social motility dsp mutations to the dif genes. J Bacteriol 184, 1462–1465.[CrossRef] [Google Scholar]
  22. Li, Y., Sun, H., Ma, X., Lu, A., Lux, R., Zusman, D. & Shi, W.(2003). Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc Natl Acad Sci U S A 100, 5443–5448.[CrossRef] [Google Scholar]
  23. Lu, A., Cho, K., Duan, X., Castaneda, S., Lux, S., Zusman, D. R., Kaplan, H. B. & Shi, W.(2004). Polysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol Microbiol (in press). [Google Scholar]
  24. MacNeil, S. D., Calara, F. & Hartzell, P. L.(1994). New clusters of genes required for gliding motility in Myxococcus xanthus. Mol Microbiol 14, 61–71.[CrossRef] [Google Scholar]
  25. MacRae, T. H. & McCurdy, D.(1976). Evidence for motility-related fimbriae in the gliding microorganism Myxococcus xanthus. Can J Microbiol 22, 1589–1593.[CrossRef] [Google Scholar]
  26. Merz, A. J., So, M. & Sheetz, M. P.(2000). Pilus retraction powers bacterial twitching motility. Nature 407, 98–102.[CrossRef] [Google Scholar]
  27. Ramaswamy, S., Dworkin, M. & Downard, J.(1997). Identification and characterization of Myxococcus xanthus mutants deficient in calcofluor white binding. J Bacteriol 179, 2863–2871. [Google Scholar]
  28. Rodriguez, A. M. & Spormann, A. M.(1999). Genetic and molecular analysis of cglB, a gene essential for single-cell gliding in Myxococcus xanthus. J Bacteriol 181, 4381–4390. [Google Scholar]
  29. Shi, W. & Zusman, D. R.(1993). The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc Natl Acad Sci U S A 90, 3378–3382.[CrossRef] [Google Scholar]
  30. Shimkets, L. J.(1986a). Correlation of energy-dependent cell cohesion with social motility in Myxococcus xanthus. J Bacteriol 166, 837–841. [Google Scholar]
  31. Shimkets, L. J.(1986b). Role of cell cohesion in Myxococcus xanthus fruiting body formation. J Bacteriol 166, 842–848. [Google Scholar]
  32. Skerker, J. M. & Berg, H. C.(2001). Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci U S A 98, 6901–6904.[CrossRef] [Google Scholar]
  33. Spormann, A. M.(1999). Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol Mol Biol Rev 63, 621–641. [Google Scholar]
  34. Spormann, A. M. & Kaiser, D.(1999). Gliding mutants of Myxococcus xanthus with high reversal frequencies and small displacements. J Bacteriol 181, 2593–2601. [Google Scholar]
  35. Stephens, K., Hartzell, P. & Kaiser, D.(1989). Gliding motility in Myxococcus xanthus: mgl locus, RNA, and predicted protein products. J Bacteriol 171, 819–830. [Google Scholar]
  36. Sun, H., Yang, Z. & Shi, W.(1999). Effect of cellular filamentation on adventurous and social gliding motility of Myxococcus xanthus. Proc Natl Acad Sci U S A 96, 15178–15183.[CrossRef] [Google Scholar]
  37. Sun, H., Zusman, D. R. & Shi, W.(2000). Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system. Curr Biol 10, 1143–1146.[CrossRef] [Google Scholar]
  38. Tsai, C. M. & Frasch, C. E.(1982). A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119, 115–119.[CrossRef] [Google Scholar]
  39. Wall, D. & Kaiser, D.(1998). Alignment enhances the cell-to-cell transfer of pilus phenotype. Proc Natl Acad Sci U S A 95, 3054–3058.[CrossRef] [Google Scholar]
  40. Wall, D., Wu, S. S. & Kaiser, D.(1998). Contact stimulation of Tgl and Type IV pili in Myxococcus xanthus. J Bacteriol 180, 759–761. [Google Scholar]
  41. White, D. J. & Hartzell, P. L.(2000). AglU, a protein required for gliding motility and spore maturation of Myxococcus xanthus, is related to WD-repeat proteins. Mol Microbiol 36, 662–678. [Google Scholar]
  42. Wolgemuth, C., Hoiczyk, E., Kaiser, D. & Oster, G.(2002). How myxobacteria glide. Curr Biol 12, 369–377.[CrossRef] [Google Scholar]
  43. Wu, S. S. & Kaiser, D.(1995). Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol Microbiol 18, 547–558.[CrossRef] [Google Scholar]
  44. Wu, S. S. & Kaiser, D.(1997). The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced. Mol Microbiol 23, 109–121.[CrossRef] [Google Scholar]
  45. Xu, H. & Hoover, T. R.(2001). Transcriptional regulation at a distance in bacteria. Curr Opin Microbiol 4, 138–144.[CrossRef] [Google Scholar]
  46. Yang, Z., Geng, Y., Xu, D., Kaplan, H. B. & Shi, W.(1998). A new set of chemotaxis homologues is essential for Myxococcus xanthus social motility. Mol Microbiol 30, 1123–1130.[CrossRef] [Google Scholar]
  47. Yang, Z., Ma, X., Tong, L., Kaplan, H. B., Shimkets, L. J. & Shi, W.(2000).Myxococcus xanthus dif genes are required for biogenesis of cell surface fibrils essential for social gliding motility. J Bacteriol 182, 5793–5798.[CrossRef] [Google Scholar]
  48. Youderian, P., Burke, N., White, D. J. & Hartzell, P. L.(2003). Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol 49, 555–570.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error