1887

Abstract

Changes in the repeats associated with the recently redefined repertoire of 31 phase-variable genes in were investigated following murine gastric colonization for up to one year in three unrelated strains. Between the beginning and end of the experimental period, changes were seen in ten genes (32 %), which would alter gene expression in one or more of the three strains studied. For those genes that showed repeat length changes at the longest time points, intermediate time points showed differences between the rates of change for different functional groups of genes. Genes most likely to be associated with immediate niche fitting changed most rapidly, including phospholipase A () and LPS biosynthetic genes. Other surface proteins, which may be under adaptive immune selection, changed more slowly. Restriction-modification genes showed no particular temporal pattern. The number of genes that phase varied during adaptation to the murine gastric environment correlated inversely with their relative fitness as previously determined in this murine model of colonization. This suggests a role for these genes in determining initial fitness for colonization as well as in subsequent niche adaptation. In addition, a coding tandem repeat within a phase-variable gene which does not control actual gene expression was also investigated. This repeat was found to vary in copy number during colonization. This suggests that changes in the structures encoded by tandem repeats may also play a role in altered protein functions and/or immune evasion during colonization.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27379-0
2005-03-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510917.html?itemId=/content/journal/micro/10.1099/mic.0.27379-0&mimeType=html&fmt=ahah

References

  1. Alm, R. A., Ling, L. S., Moir, D. T. & 20 other authors ( 1999; ). Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176–180.[CrossRef]
    [Google Scholar]
  2. Appelmelk, B. J., Shiberu, B., Trinks, C. & 10 other authors ( 1998; ). Phase variation in Helicobacter pylori lipopolysaccharide. Infect Immun 66, 70–76.
    [Google Scholar]
  3. Appelmelk, B. J., Martino, M. C., Veenhof, E. & 7 other authors ( 2000; ). Phase variation in H type I and Lewis a epitopes of Helicobacter pylori lipopolysaccharide. Infect Immun 68, 5928–5932.[CrossRef]
    [Google Scholar]
  4. Ayraud, S., Janvier, B., Salaün, L. & Fauchère, J. L. ( 2003; ). Modification in the ppk gene of Helicobacter pylori during single and multiple experimental murine infections. Infect Immun 71, 1733–1739.[CrossRef]
    [Google Scholar]
  5. de Vries, N., Duinsbergen, D., Kuipers, E. J., Pot, R. G., Wiesenekker, P., Penn, C. W., Van Vliet, A. H., Vandenbroucke-Grauls, C. M. & Kusters, J. G. ( 2002; ). Transcriptional phase variation of a type III restriction-modification system in Helicobacter pylori. J Bacteriol 184, 6615–6623.[CrossRef]
    [Google Scholar]
  6. Falush, D., Wirth, T., Linz, B. & 15 other authors ( 2003; ). Traces of human migrations in Helicobacter pylori populations. Science 299, 1582–1585.[CrossRef]
    [Google Scholar]
  7. Ilver, D., Arnqvist, A., Ogren, J. & 7 other authors ( 1998; ). Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279, 373–377.[CrossRef]
    [Google Scholar]
  8. Inzana, T. J., Gogolewski, R. P. & Corbeil, L. B. ( 1992; ). Phenotypic phase variation in Haemophilus somnus lipooligosaccharide during bovine pneumonia and after in vitro passage. Infect Immun 60, 2943–2951.
    [Google Scholar]
  9. Jordan, P., Snyder, L. A. & Saunders, N. J. ( 2003; ). Diversity in coding tandem repeats in related Neisseria spp. BMC Microbiol 3, 23.[CrossRef]
    [Google Scholar]
  10. Josenhans, C., Eaton, K. A., Thevenot, T. & Suerbaum, S. ( 2000; ). Switching of flagellar motility in Helicobacter pylori by reversible length variation of a short homopolymeric sequence repeat in fliP, a gene encoding a basal body protein. Infect Immun 68, 4598–4603.[CrossRef]
    [Google Scholar]
  11. Lee, A., O'Rourke, J., De Ungria, M. C., Robertson, B., Daskalopoulos, G. & Dixon, M. F. ( 1997; ). A standardized mouse model of Helicobacter pylori infection: introducing the Sydney strain. Gastroenterology 112, 1386–1397.[CrossRef]
    [Google Scholar]
  12. Logan, S. M., Conlan, J. W., Monteiro, M. A., Wakarchuk, W. W. & Altman, E. ( 2000; ). Functional genomics of Helicobacter pylori: identification of a beta-1,4-galactosyltransferase and generation of mutants with altered lipopolysaccharide. Mol Microbiol 35, 1156–1167.[CrossRef]
    [Google Scholar]
  13. Mahdavi, J., Sonden, B., Hurtig, & 20 other authors ( 2002; ). Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297, 573–578.[CrossRef]
    [Google Scholar]
  14. Moran, A. P., Sturegard, E., Sjunnesson, H., Wadstrom, T. & Hynes, S. O. ( 2000; ). The relationship between O-chain expression and colonisation ability of Helicobacter pylori in a mouse model. FEMS Immunol Med Microbiol 29, 263–270.[CrossRef]
    [Google Scholar]
  15. Moran, A. P., Knirel, Y. A., Senchenkova, S. N., Widmalm, G., Hynes, S. O. & Jansson, P. E. ( 2002; ). Phenotypic variation in molecular mimicry between Helicobacter pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms. Acid-induced phase variation in Lewis(x) and Lewis(y) expression by H. pylori lipopolysaccharides. J Biol Chem 277, 5785–5795.[CrossRef]
    [Google Scholar]
  16. Nedrud, J. G. ( 1999; ). Animal models for gastric Helicobacter immunology and vaccine studies. FEMS Immunol Med Microbiol 24, 243–250.[CrossRef]
    [Google Scholar]
  17. Peck, B., Ortkamp, M., Diehl, K. D., Hundt, E. & Knapp, B. ( 1999; ). Conservation, localization and expression of HopZ, a protein involved in adhesion of Helicobacter pylori. Nucleic Acids Res 27, 3325–3333.[CrossRef]
    [Google Scholar]
  18. Raghavan, S., Hjulstrom, M., Holmgren, J. & Svennerholm, A. M. ( 2002; ). Protection against experimental Helicobacter pylori infection after immunization with inactivated H. pylori whole-cell vaccines. Infect Immun 70, 6383–6388.[CrossRef]
    [Google Scholar]
  19. Salaün, L., Snyder, L. A. & Saunders, N. J. ( 2003; ). Adaptation by phase variation in pathogenic bacteria. Adv Appl Microbiol 52, 263–301.
    [Google Scholar]
  20. Salaün, L., Linz, B., Suerbaum, S. & Saunders, N. J. ( 2004; ). The diversity within an expanded and re-defined repertoire of phase-variable genes in Helicobacter pylori. Microbiology 150, 817–830.[CrossRef]
    [Google Scholar]
  21. Saunders, N. J. ( 2003; ). Evasion of antibody responses: bacterial phase variation. In Bacterial Evasion of Host Immune Responses, pp. 103–124. Edited by B. Henderson & P. C. F. Oyston. Cambridge: Cambridge University Press.
  22. Saunders, N. J., Peden, J. F., Hood, D. W. & Moxon, E. R. ( 1998; ). Simple sequence repeats in the Helicobacter pylori genome. Mol Microbiol 27, 1091–1098.[CrossRef]
    [Google Scholar]
  23. Saunders, N. J., Moxon, E. R. & Gravenor, M. B. ( 2003; ). Mutation rates: estimating phase variation rates when fitness differences are present and their impact on population structure. Microbiology 149, 485–495.[CrossRef]
    [Google Scholar]
  24. Snyder, L. A., Butcher, S. A. & Saunders, N. J. ( 2001; ). Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp. Microbiology 147, 2321–2332.
    [Google Scholar]
  25. Solnick, J. V., Hansen, L. M., Salama, N. R., Boonjakuakul, J. K. & Syvanen, M. ( 2004; ). Modifications of Helicobacter pylori outer membrane protein expression during experimental infection of rhesus macaques. Proc Natl Acad Sci U S A 101, 2106–2111.[CrossRef]
    [Google Scholar]
  26. Sommer, F., Wilken, H., Faller, G. & Lohoff, M. ( 2004; ). Systemic Th1 immunization of mice against Helicobacter pylori infection with CpG oligodeoxynucleotides as adjuvants does not protect from infection but enhances gastritis. Infect Immun 72, 1029–1035.[CrossRef]
    [Google Scholar]
  27. Tannaes, T., Dekker, N., Bukholm, G., Bijlsma, J. J. & Appelmelk, B. J. ( 2001; ). Phase variation in the Helicobacter pylori phospholipase A gene and its role in acid adaptation. Infect Immun 69, 7334–7340.[CrossRef]
    [Google Scholar]
  28. Tomb, J. F., White, O., Kerlavage, A. R. & 39 other authors ( 1997; ). The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539–547.[CrossRef]
    [Google Scholar]
  29. van der Woude, M. W. & Baumler, A. J. ( 2004; ). Phase and antigenic variation in bacteria. Clin Microbiol Rev 17, 581–611.[CrossRef]
    [Google Scholar]
  30. Webb, G. F. & Blaser, M. J. ( 2002; ). Dynamics of bacterial phenotype selection in a colonized host. Proc Natl Acad Sci U S A 99, 3135–3140.[CrossRef]
    [Google Scholar]
  31. Wong, P. M., Kang, A., Chen, H., Yuan, Q., Fan, P., Sultzer, B. M., Kan, Y. W. & Chung, S. W. ( 1999; ). Lps(d)/Ran of endotoxin-resistant C3H/HeJ mice is defective in mediating lipopolysaccharide endotoxin responses. Proc Natl Acad Sci U S A 96, 11543–11548.[CrossRef]
    [Google Scholar]
  32. Yamaoka, Y., Kwon, D. H. & Graham, D. Y. ( 2000; ). A M(r) 34,000 proinflammatory outer membrane protein (oipA) of Helicobacter pylori. Proc Natl Acad Sci U S A 97, 7533–7538.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27379-0
Loading
/content/journal/micro/10.1099/mic.0.27379-0
Loading

Data & Media loading...

vol. , part 3, pp. 917–923

Follow up of the changes in the number of tandem repeats in three LPS biosynthesis genes of during the course of infection in the mouse model, and follow up of variations in the length of the repeat associated with changes in status of phase-variable genes of during the course of infection in the mouse model [PDF file](77 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error