1887

Abstract

Acetaminophen (paracetamol), one of the most widely used analgesics, is toxic under conditions of overdose or in certain disease conditions, but the mechanism of acetaminophen toxicity is still not entirely understood. To obtain fresh insights into acetaminophen toxicity, this phenomenon was investigated in yeast. Acetaminophen was found to be toxic to yeast cells, with mutants displaying hypersensitivity. Yeast cells grown in the presence of acetaminophen were found to accumulate intracellular acetaminophen, but no metabolic products of acetaminophen could be detected in these extracts. The toxicity response did not lead to an oxidative stress response, although it did involve Yap1p. The cytochrome P450 enzymes of yeast, Erg5p and Erg11p, did not appear to participate in this process, unlike the mammalian systems. Furthermore, we could not establish a central role for glutathione depletion or the cellular glutathione redox status in acetaminophen toxicity, suggesting differences from mammalian systems in the pathways causing toxicity. Investigations of the resistance mechanisms revealed that deletion of the glutathione-conjugate pumps Ycf1p (a target of Yap1p) and Bpt1p, surprisingly, led to acetaminophen resistance, while overexpression of the multidrug resistance pumps Snq2p and Flr1p (also targets of Yap1p) led to acetaminophen resistance. The Yap1p-dependent resistance to acetaminophen required a functional Pdr1p or Pdr3p protein, but not a functional Yrr1p. In contrast, resistance mediated by Pdr1p/Pdr3p did not require a functional Yap1p, and revealed a distinct hierarchy in the resistance to acetaminophen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27374-0
2005-01-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/1/mic1510099.html?itemId=/content/journal/micro/10.1099/mic.0.27374-0&mimeType=html&fmt=ahah

References

  1. Alarco, A. M., Balan, I., Tslibi, D., Mainville, N. & Raymond, M. ( 1997; ). AP-1 mediated multidrug resistance in Saccharomyces cerevisiae requires FLR1 encoding a transporter of the major facilitator superfamily. J Biol Chem 272, 19304–19313.[CrossRef]
    [Google Scholar]
  2. Anderson, M. E. & Meister, A. ( 1983; ). Transport and direct utilization of gamma-glutamylcyst(e)ine for glutathione synthesis. Proc Natl Acad Sci U S A 80, 707–711.[CrossRef]
    [Google Scholar]
  3. Aoyama, Y., Okikawa, T. & Yoshida, Y. ( 1981; ). Evidence for the presence of cytochrome P-450 functional in lanosterol 14 alpha-demethylation in microsomes of aerobically grown respiring yeast. Biochim Biophys Acta 665, 596–601.[CrossRef]
    [Google Scholar]
  4. Azevedo, D., Tacnet, F., Delaunay, A., Rodrigues-Pousada, C. & Toledano, M. B. ( 2003; ). Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signaling. Free Radic Biol Med 35, 889–900.[CrossRef]
    [Google Scholar]
  5. Balzi, E. & Goffeau, A. ( 1995; ). Yeast multidrug resistance: the PDR network. J Bioenerg Biomembr 27, 71–76.[CrossRef]
    [Google Scholar]
  6. Balzi, E., Wang, M., Leterme, S., Van-Dyck, L. & Goffeau, A. ( 1994; ). PDR5, a novel yeast multidrug resistance conferring transporter controlled by the transcription regulator PDR1. J Biol Chem 269, 2206–2214.
    [Google Scholar]
  7. Bourbouloux, A., Shahi, P., Chakladar, A., Delrot, S. & Bachhawat, A. K. ( 2000; ). Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. J Biol Chem 275, 13259–13265.[CrossRef]
    [Google Scholar]
  8. Brennan, R. J. & Schiestel, R. H. ( 1997; ). Aniline and its metabolites generate free radicals in yeast. Mutagenesis 12, 215–220.[CrossRef]
    [Google Scholar]
  9. Briza, P., Breitenbach, M., Ellinger, A. & Segall, J. ( 1990; ). Isolation of two developmentally regulated genes involved in spore wall maturation in S. cerevisiae. Genes Dev 10, 1775–1789.
    [Google Scholar]
  10. Bróco, N., Tenreiro, S., Viegas, C. A. & Sá-Correia, I. ( 1999; ). FLR1 gene (ORF YBR008c) is required for benomyl and methotrexate resistance in Saccharomyces cerevisiae and its benomyl-induced expression is dependent on Pdr3 transcriptional regulator. Yeast 15, 1595–1608.[CrossRef]
    [Google Scholar]
  11. Brown, J. L., North, S. & Bussey, H. ( 1993; ). SKN7, a yeast multicopy suppressor of a mutation affecting cell wall beta-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors. J Bacteriol 175, 6908–6915.
    [Google Scholar]
  12. Chaudhuri, B., Ingavale, S. & Bachhawat, A. K. ( 1997; ). apd1 +, a gene required for red pigment formation in ade6 mutants of Schizosaccharomyces pombe, encodes an enzyme required for glutathione biosynthesis: a role for glutathione and a glutathione-conjugate pump. Genetics 145, 75–83.
    [Google Scholar]
  13. Chignell, C. F. & Sik, R. H. ( 2003; ). A photochemical study of cells loaded with 2′,7′-dichlorofluorescein: implications for the detection of reactive oxygen species generated during UVA irradiation. Free Radic Biol Med 34, 1029–1034.[CrossRef]
    [Google Scholar]
  14. Dahlin, D. C., Miwa, G. T., Lu, A. Y. & Nelson, S. D. ( 1984; ). N-acetyl-p-benzoquinoneimine: a cytochrome P-450 mediated oxidation product of acetaminophen. Proc Natl Acad Sci U S A 81, 1327–1331.[CrossRef]
    [Google Scholar]
  15. Davidson, D. G. D. & Eastham, W. N. ( 1966; ). Acute liver necrosis following overdose with acetaminophen. Br Med J 2, 497.[CrossRef]
    [Google Scholar]
  16. Decottignies, A. & Goffeau, A. ( 1997; ). Complete inventory of the yeast ABC proteins. Nat Genet 15, 137–145.[CrossRef]
    [Google Scholar]
  17. Decottignies, A., Lambert, L., Catty, P., Degand, H., Epping, E. A., Moye-Rowley, W. S., Balzi, E. & Goffeau, A. ( 1995; ). Identification and characterization of SNQ2, a new multidrug ATP binding cassette transporter of the yeast plasma membrane. J Biol Chem 270, 18150–18157.[CrossRef]
    [Google Scholar]
  18. Delaunay, A., Pflieger, D., Barrault, M. B., Vinh, J. & Toledano, M. B. ( 2002; ). A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111, 471–481.[CrossRef]
    [Google Scholar]
  19. DeRisi, J. L., Iyer, V. R. R. & Brown, P. O. ( 1997; ). Exploring the metabolic and genetic control of gene expression on a genome scale. Science 278, 680–686.[CrossRef]
    [Google Scholar]
  20. Grant, C. M., Collinson, L. P., Roe, J. H. & Dawes, I. W. ( 1996; ). Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Mol Microbiol 21, 171–179.[CrossRef]
    [Google Scholar]
  21. Guarente, L. ( 1983; ). Yeast promoters and LacZ fusions designed to study expressions of cloned genes in yeast. Methods Enzymol 101, 181–191.
    [Google Scholar]
  22. Herzenberg, L. A., De Rosa, S. C., Dubs, J. G., Roederer, M., Anderson, M. T., Ela, S. W., Deresinski, S. C. & Herzenberg, L. A. ( 1997; ). Glutathione deficiency is associated with impaired survival in HIV disease. Proc Natl Acad Sci U S A 94, 1967–1972.[CrossRef]
    [Google Scholar]
  23. Hinson, J. A. ( 1980; ). Biological toxicology of acetaminophen. Rev Biochem Toxicol 2, 103–129.
    [Google Scholar]
  24. Howie, D., Asriaenssens, P. & Prescott, L. F. ( 1977; ). Paracetamol metabolism following overdose: application of high performance liquid chromatography. J Pharm Pharmacol 29, 235–237.[CrossRef]
    [Google Scholar]
  25. Ioannides, C., Steele, C. M. & Parke, D. V. ( 1983; ). Species variation in the metabolic activation of paracetamol to toxic intermediates: role of cytochrome P450 and P-448. Toxicol Lett 16, 55–61.[CrossRef]
    [Google Scholar]
  26. Jollow, D. J., Thorgeirsson, S. S., Potter, W. Z., Hashimoto, M. & Mitchell, J. R. ( 1974; ). Acetaminophen-induced hepatic necrosis. VI. Metabolic disposition of toxic and nontoxic doses of acetaminophen. Pharmacology 12, 251–271.[CrossRef]
    [Google Scholar]
  27. Jungwirth, H., Wendler, F., Platzer, B., Bergler, H. & Hogenauer, G. ( 2000; ). Diazaborine resistance in yeast involves the efflux pumps Ycf1p and Flr1p and is enhanced by a gain-of-function allele of gene YAP1. Eur J Biochem 267, 4809–4816.[CrossRef]
    [Google Scholar]
  28. Kanazawa, S., Driscoll, M. & Struhl, K. ( 1988; ). ATR1, a Saccharmoyces cerevisiae gene encoding a transmembrane protein required for aminotriazole resistance. Mol Cell Biol 8, 664–673.
    [Google Scholar]
  29. Kaur, R. & Bachhawat, A. K. ( 1999; ). The yeast multidrug resistance protein, pdr5p, confers reduced drug resistance in the erg mutants of Saccharomyces cerevisiae. Microbiology 145, 809–819.[CrossRef]
    [Google Scholar]
  30. Klein, M., Mamnun, Y. M., Eggmann, T., Schuller, C., Wolfger, H., Martinoia, E. & Kuchler, K. ( 2002; ). The ATP-binding cassette (ABC) transporter Bpt1p mediates vacuolar sequestration of glutathione conjugates in yeast. FEBS Lett 520, 63–67.[CrossRef]
    [Google Scholar]
  31. Kozovska, Z., Maraz, A., Magyar, I. & Subik, J. ( 2001; ). Multidrug resistance as a dominant molecular marker in transformation of wine yeast. J Biotechnol 92, 27–35.[CrossRef]
    [Google Scholar]
  32. Le Crom, S., Devaux, F., Marc, P., Zhang, X., Moye-Rowley, W. S. & Jacq, C. ( 2002; ). New insights into the pleiotropic drug resistance network from genome-wide characterization of the YRR1 transcription factor regulation system. Mol Cell Biol 22, 2642–2649.[CrossRef]
    [Google Scholar]
  33. Mamnun, Y. M., Pandjaitan, R., Mahe, Y., Delahodde, A. & Kuchler, K. ( 2002; ). The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo. Mol Microbiol 46, 1429–1440.[CrossRef]
    [Google Scholar]
  34. Mitchell, J. R., Jollow, D. J., Potter, W. Z., Davies, C. C., Gillette, J. R. & Brodie, B. B. ( 1973; ). Acetaminophen induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther 187, 195–202.
    [Google Scholar]
  35. Monks, T. J. & Lau, S. S. ( 1998; ). The pharmacology and toxicology of polyphenolic-glutathione conjugates. Annu Rev Pharmacol Toxicol 38, 229–255.[CrossRef]
    [Google Scholar]
  36. Morgan, B. A., Banks, G. R., Toone, W. M., Raitt, D., Kuje, S. & Johnston, L. S. ( 1997; ). The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J 16, 1035–1044.[CrossRef]
    [Google Scholar]
  37. Moye-Rowley, W. S., Harshman, K. D. & Parker, C. S. ( 1988; ). YAP1 encodes a yeast homolog of mammalian transcription factor AP-1. Cold Spring Harbor Symp Quant Biol 53, 711–717.[CrossRef]
    [Google Scholar]
  38. Myhre, O., Andersen, J. M., Aarnes, H. & Fonnum, F. ( 2003; ). Evaluation of the probes 2′,7′-dichlorofluorescein diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 65, 1575–1582.[CrossRef]
    [Google Scholar]
  39. Pascolo, L., Petrovic, S., Cupelli, F., Bruschi, C. V., Anelli, P. L., Lorusso, V., Visigalli, M., Uggeri, F. & Tiribelli, C. ( 2001; ). ABC protein transport of MRI contrast agents in canalicular rat liver plasma vesicles and yeast vacuoles. Biochem Biophys Res Commun 282, 60–66.[CrossRef]
    [Google Scholar]
  40. Petrovic, S., Pascolo, L., Gallo, R., Cupelli, F., Ostrow, J. D., Goffeau, A., Tiribelli, C. & Bruschi, C. V. ( 2000; ). The products of YCF1 and YLL015w (BPT1) cooperate for the ATP-dependent vacuolar transport of unconjugated bilirubin in Saccharomyces cerevisiae. Yeast 16, 561–571.[CrossRef]
    [Google Scholar]
  41. Potter, W. Z., Thorgeirsson, S. S., Jollow, D. J. & Mitchell, J. R. ( 1974; ). Acetaminophen-induced hepatic necrosis. V. Correlation of hepatic necrosis, covalent binding and glutathione depletion in hamsters. Pharmacology 12, 129–143.[CrossRef]
    [Google Scholar]
  42. Prescott, L. F. ( 1983; ). The treatment of acetaminophen poisoning. Drugs 25, 290–314.[CrossRef]
    [Google Scholar]
  43. Ray, S. D., Kamendulis, L. M., Gurule, M. W., Yorkin, R. D. & Corcoran, G. B. ( 1993; ). Ca2+ antagonists inhibit DNA fragmentation and toxic cell death induced by acetaminophen. FASEB J 7, 453–463.
    [Google Scholar]
  44. Ruepp, S. U., Tonge, R. P., Shaw, J., Wallis, N. & Pognan, F. ( 2002; ). Genomics and proteomics analysis of acetaminophen toxicity in mouse liver. Toxicol Sci 65, 135–150.[CrossRef]
    [Google Scholar]
  45. Sevos, J., Hasse, E. & Brendel, M. ( 1993; ). Gene SNQ2 of Saccharomyces cerevisiae, which confers resistance to 4-nitroquinoline-N-oxide and other chemicals, encodes a 169 kDa protein homologous to ATP-dependent permeases. Mol Gen Genet 236, 214–218.
    [Google Scholar]
  46. Sharma, K. G., Sharma, V., Bourbouloux, A., Delrot, S. & Bachhawat, A. K. ( 2000; ). Delayed growth stasis upon glutathione depletion in Saccharomyces cerevisiae: evidence for an overlapping role played by thioredoxin. Current Genetics 38, 71–77.[CrossRef]
    [Google Scholar]
  47. Sharma, K. G., Mason, D. L., Liu, G., Rea, P. A., Bachhawat, A. K. & Michaelis, S. ( 2002; ). Localization, regulation and substrate transport properties of Bpt1p, a Saccharomyces cerevisiae MRP-type ABC transporter. Eukaryot Cell 1, 391–400.[CrossRef]
    [Google Scholar]
  48. Sharma, K. G., Kaur, R. & Bachhawat, A. K. ( 2003; ). The glutathione-mediated detoxification pathway in yeast: an analysis using the adenine pigment phenotype that accumulates in certain adenine biosynthetic mutants of yeasts reveals the involvement of novel genes. Arch Microbiol 180, 108–117.[CrossRef]
    [Google Scholar]
  49. Skaggs, B. A., Alexander, J. F., Pierson, C. A., Schweitzer, K. S., Chun, K. T., Koegel, C., Barbuch, R. & Bard, M. ( 1996; ). Cloning and characterization of the Saccharomyces cerevisiae C-22 sterol desaturase gene, encoding a second cytochrome P-450 involved in ergosterol biosynthesis. Gene 169, 105–109.[CrossRef]
    [Google Scholar]
  50. Tenreiro, S., Fernandes, A. R. & Sá-Correia, I. ( 2001; ). Transcriptional activation of FLR1 gene during Saccharomyces cerevisiae adaptation to growth with benomyl: role of Yap1p and Pdr3p. Biochem Biophys Res Commun 280, 216–222.[CrossRef]
    [Google Scholar]
  51. Wach, A., Brachat, A., Pohlman, R. & Philippsen, P. ( 1994; ). New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808.[CrossRef]
    [Google Scholar]
  52. Wehrschutz-Sigl, E., Jungwirth, H., Bergler, H. & Hogenauer, G. ( 2004; ). The transporters Pdr5p and Snq2p mediate diazaborine resistance and are under the control of the gain-of-function allele PDR1-12. Eur J Biochem 271, 1145–1152.[CrossRef]
    [Google Scholar]
  53. Wemmie, J. A., Szezypka, M. S., Thiele, D. J. & Moye-Rowley, W. S. ( 1994; ). Cadmium tolerance mediated by the yeast AP-1 protein requires the presence of an ATP-binding cassette transporter-encoding gene, YCF1. J Biol Chem 269, 32592–32597.
    [Google Scholar]
  54. Wendler, F., Bergler, H., Prutej, K., Jungwirth, H., Zisser, G., Kuchler, K. & Hogenauer, G. ( 1997; ). Diazaborine resistance in the yeast Saccharomyces cerevisiae reveals a link between YAP1 and the pleiotropic drug resistance genes PDR1 and PDR3. J Biol Chem 272, 27091–27098.[CrossRef]
    [Google Scholar]
  55. Wu, Y., Zhang, X., Bardag-Gorce, F. & 8 other authors ( 2004; ). Retinoid X receptor alpha regulates glutathione homeostasis and xenobiotic detoxification processes in mouse liver. Mol Pharmacol 65, 550–557.[CrossRef]
    [Google Scholar]
  56. Xiong, H., Turner, K. C., Ward, E. S., Jansen, P. L. & Brouwer, K. L. ( 2000; ). Altered hepatobiliary disposition of acetaminophen glucuronide in isolated perfused livers from multidrug resistance-associated protein 2-deficient TR(−) rats. J Pharmacol Exp Ther 295, 512–518.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27374-0
Loading
/content/journal/micro/10.1099/mic.0.27374-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error