Impaired PRPP-synthesizing capacity compromises cell integrity signalling in Free

Abstract

In , genes comprise a family of five paralogous genes. Previously, it has been shown that in the cell the gene products are organized into two interacting complexes, one of which is a heterodimer and the other a heterotrimer. Here, it has been demonstrated that in addition to supplying the cell with the key metabolic intermediate PRPP [5-phospho--ribosyl-1()-pyrophosphate], the gene products contribute to the maintenance of cell integrity. Specifically, the phosphorylation of Rlm1, one of the end points of the cell integrity signalling pathway, is significantly impaired following deletion of any one of the genes, in particular and . This is reflected in changes in the expression of the alternative 1,3--glucan synthase catalytic subunit, Fks2, as measured by its promoter activity. Yeast two-hybrid analysis has shown that Prs1, specifically the non-homologous region, NHR1-1 and Prs3, and to a lesser extent Prs2 and Prs4, interact with the MAPK (mitogen-activated protein kinase) of the cell integrity pathway, Slt2. When is lacking, the basal level of phosphorylation of Slt2 is increased. Furthermore, Δ and Δ strains have an increased chitin content under normal growth conditions. -Factor sensitivity and Calcofluor White resistance associated with the lack of Prs1 and Prs3 corroborate the involvement of these two gene products in cell integrity signalling. It is postulated that Prs polypeptides play a significant role in the remodelling of the cell wall and may have a direct involvement in cell integrity signalling.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27373-0
2004-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/10/mic1503327.html?itemId=/content/journal/micro/10.1099/mic.0.27373-0&mimeType=html&fmt=ahah

References

  1. Angeles de la Torre-Ruiz, M., Torres, J., Arino, J. & Herrero, E.(2002). Sit4 is required for proper modulation of the biological functions mediated by Pkc1 and the cell integrity pathway in Saccharomyces cerevisiae. J Biol Chem 277, 33468–33476.[CrossRef] [Google Scholar]
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K.(1995).Current Protocols in Molecular Biology. New York: Wiley.
  3. Bader, G. D., Betel, D. & Hogue, C. W.(2003). BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res 31, 248–250.[CrossRef] [Google Scholar]
  4. Becker, M. A.(2001). Phosphoribosylpyrophosphate synthetase and the regulation of phosphoribosylpyrophosphate production in human cells. Prog Nucleic Acid Res Mol Biol 69, 115–148. [Google Scholar]
  5. Binley, K. M., Radcliffe, P. A., Trevethick, J., Duffy, K. A. & Sudbery, P. E.(1999). The yeast PRS3 gene is required for cell integrity, cell cycle arrest upon nutrient deprivation, ion homeostasis and the proper organization of the actin cytoskeleton. Yeast 15, 1459–1469.[CrossRef] [Google Scholar]
  6. Boorsma, A., Nobel, H., Riet, B., Bargmann, B., Brul, S., Hellingwerf, K. J. & Klis, F. M.(2004). Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae. Yeast 21, 413–427.[CrossRef] [Google Scholar]
  7. Bradford, M. M.(1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef] [Google Scholar]
  8. Buehrer, B. M. & Errede, B.(1997). Coordination of the mating and cell integrity mitogen-activated protein kinase pathways in Saccharomyces cerevisiae. Mol Cell Biol 17, 6517–6525. [Google Scholar]
  9. Carter, A. T., Narbad, A., Pearson, B. M., Beck, K. F., Logghe, M., Contreras, R. & Schweizer, M.(1994). Phosphoribosylpyrophosphate synthetase (PRS): a new gene family in Saccharomyces cerevisiae. Yeast 10, 1031–1044.[CrossRef] [Google Scholar]
  10. Collister, M., Didmon, M. P., MacIsaac, F., Stark, M. J., MacDonald, N. Q. & Keyse, S. M.(2002). YIL113w encodes a functional dual-specificity protein phosphatase which specifically interacts with and inactivates the Slt2/Mpk1p MAP kinase in S. cerevisiae. FEBS Lett 527, 186–192.[CrossRef] [Google Scholar]
  11. de Groot, P. W. J., Ruiz, C., Vazguez, C. R. & other authors(2001). A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Comp Funct Genomics 2, 124–142.[CrossRef] [Google Scholar]
  12. de Nobel, H., Ruiz, C., Martin, H., Morris, W., Brul, S., Molina, M. & Klis, F. M.(2000). Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2-lacZ expression, glucanase resistance and thermotolerance. Microbiology 146, 2121–2132. [Google Scholar]
  13. Dodou, E. & Treisman, R.(1997). The Saccharomyces cerevisiae MADS-box transcription factor Rlm1 is a target for the Mpk1 mitogen-activated protein kinase pathway. Mol Cell Biol 17, 1848–1859. [Google Scholar]
  14. Elble, R.(1992). A simple and efficient procedure for transformation of yeasts. Biotechniques 13, 18–20. [Google Scholar]
  15. Flandez, M., Cosano, I. C., Nombela, C., Martin, H. & Molina, M.(2004). Reciprocal regulation between Slt2 MAPK and isoforms of Msg5 dual-specificity protein phosphatase modulates the yeast cell integrity pathway. J Biol Chem 279, 11027–11034.[CrossRef] [Google Scholar]
  16. Garcia, R., Bermejo, C., Grau, C., Perez, R., Rodriguez-Pena, J. M., Francois, J., Nombela, C. & Arroyo, J.(2004). The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J Biol Chem 279, 15183–15195.[CrossRef] [Google Scholar]
  17. Gietz, R. D. & Sugino, A.(1988). New yeast–Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74, 527–534.[CrossRef] [Google Scholar]
  18. Gietz, D., St Jean, A., Woods, R. A. & Schiestl, R. H.(1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20, 1425.[CrossRef] [Google Scholar]
  19. Gray, J. V., Ogas, J. P., Kamada, Y., Stone, M., Levin, D. E. & Herskowitz, I.(1997). A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO J 16, 4924–4937.[CrossRef] [Google Scholar]
  20. Guarente, L.(1983). Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol 101, 181–191. [Google Scholar]
  21. Gustin, M. C., Albertyn, J., Alexander, M. & Davenport, K.(1998). MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62, 1264–1300. [Google Scholar]
  22. Hahn, J.-S. & Thiele, D. J.(2002). Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase. J Biol Chem 277, 21278–21284.[CrossRef] [Google Scholar]
  23. Heinisch, J. J., Lorberg, A., Schmitz, H. P. & Jacoby, J. J.(1999). The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol 32, 671–680.[CrossRef] [Google Scholar]
  24. Hernando, Y., Parr, A. & Schweizer, M.(1998). PRS5, the fifth member of the phosphoribosyl pyrophosphate synthetase gene family in Saccharomyces cerevisiae, is essential for cell viability in the absence of either PRS1 or PRS3. J Bacteriol 180, 6404–6407. [Google Scholar]
  25. Hernando, Y., Carter, A. T., Parr, A., Hove-Jensen, B. & Schweizer, M.(1999). Genetic analysis and enzyme activity suggest the existence of more than one minimal functional unit capable of synthesizing phosphoribosyl pyrophosphate in Saccharomyces cerevisiae. J Biol Chem 274, 12480–12487.[CrossRef] [Google Scholar]
  26. Hohmann, S.(2002). Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66, 300–372.[CrossRef] [Google Scholar]
  27. Hove-Jensen, B.(1988). Mutation in the phosphoribosylpyrophosphate synthetase gene (prs) that results in simultaneous requirements for purine and pyrimidine nucleosides, nicotinamide nucleotide, histidine, and tryptophan in Escherichia coli. J Bacteriol 170, 1148–1152. [Google Scholar]
  28. Huang, K. N. & Symington, L. S.(1995). Suppressors of a Saccharomyces cerevisiae pkc1 mutation identify alleles of the phosphatase gene PTC1 and of a novel gene encoding a putative basic leucine zipper protein. Genetics 141, 1275–1285. [Google Scholar]
  29. Igual, J. C., Johnson, A. L. & Johnston, L. H.(1996). Coordinated regulation of gene expression by the cell cycle transcription factor Swi4 and the protein kinase C MAP kinase pathway for yeast cell integrity. EMBO J 15, 5001–5013. [Google Scholar]
  30. Inoue, S. B., Takewaki, N., Takasuka, T. & other authors(1995). Characterization and gene cloning of 1,3-beta-d-glucan synthase from Saccharomyces cerevisiae. Eur J Biochem 231, 845–854.[CrossRef] [Google Scholar]
  31. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M. & Sakaki, Y.(2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98, 4569–4574.[CrossRef] [Google Scholar]
  32. James, P., Halladay, J. & Craig, E. A.(1996). Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436. [Google Scholar]
  33. Jung, U. S. & Levin, D. E.(1999). Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol Microbiol 34, 1049–1057.[CrossRef] [Google Scholar]
  34. Kaida, D., Yashiroda, H., Toh-e, A. & Kikuchi, Y.(2002). Yeast Whi2 and Psr1-phosphatase form a complex and regulate STRE-mediated gene expression. Genes Cells 7, 543–552.[CrossRef] [Google Scholar]
  35. Kaiser, C., Michaelis, S. & Mitchell, A.(1994).Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  36. Kamada, Y., Jung, U. S., Piotrowski, J. & Levin, D. E.(1995). The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev 9, 1559–1571.[CrossRef] [Google Scholar]
  37. Ketela, T., Green, R. & Bussey, H.(1999).Saccharomyces cerevisiae Mid2p is a potential cell wall stress sensor and upstream activator of the PKC1-MPK1 cell integrity pathway. J Bacteriol 181, 3330–3340. [Google Scholar]
  38. Khorana, H. G., Fernandes, J. F. & Kornberg, A. J.(1958). Pyrophosphorylation of ribose-5-phosphate in the enzymatic synthesis of 5-phosphorylribose-1-pyrophosphate. J Biol Chem 230, 941–948. [Google Scholar]
  39. Kirchrath, L., Lorberg, A., Schmitz, H. P., Gengenbacher, U. & Heinisch, J. J.(2000). Comparative genetic and physiological studies of the MAP kinase Mpk1p from Kluyveromyces lactis and Saccharomyces cerevisiae. J Mol Biol 300, 743–758.[CrossRef] [Google Scholar]
  40. Klis, F. M., Mol, P., Hellingwerf, K. & Brul, S.(2002). Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26, 239–256.[CrossRef] [Google Scholar]
  41. Krause, S. A. & Gray, J. V.(2002). The protein kinase C pathway is required for viability in quiescence in Saccharomyces cerevisiae. Curr Biol 12, 588–593.[CrossRef] [Google Scholar]
  42. Lagorce, A., Hauser, N. C., Labourdette, D., Rodriguez, C., Martin-Yken, H., Arroyo, J., Hoheisel, J. D. & Francois, J.(2003). Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem 278, 20345–20357.[CrossRef] [Google Scholar]
  43. Madden, S. L., Creasy, C. L., Srinivas, V., Fawcett, W. & Bergman, L. W.(1988). Structure and expression of the PHO80 gene of Saccharomyces cerevisiae. Nucleic Acids Res 16, 2625–2637.[CrossRef] [Google Scholar]
  44. Madden, S. L., Johnson, D. L. & Bergman, L. W.(1990). Molecular and expression analysis of the negative regulators involved in the transcriptional regulation of acid phosphatase production in Saccharomyces cerevisiae. Mol Cell Biol 10, 5950–5957. [Google Scholar]
  45. Martin, H., Arroyo, J., Sanchez, M., Molina, M. & Nombela, C.(1993). Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 37 °C. Mol Gen Genet 241, 177–184. [Google Scholar]
  46. Martin, H., Rodriguez-Pachon, J. M., Ruiz, C., Nombela, C. & Molina, M.(2000). Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 275, 1511–1519.[CrossRef] [Google Scholar]
  47. Miller, J. H.(1972).Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  48. Orlean, P.(1997). Biogenesis of yeast wall surface components. In The Molecular and Cellular Biology of the Yeast Saccharomyces, pp. 299–362. Edited by J. R. Pringle, J. Broach & E. W. Jones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  49. Philip, B. & Levin, D. E.(2001). Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol Cell Biol 21, 271–280.[CrossRef] [Google Scholar]
  50. Popolo, L. & Vai, M.(1999). The Gas1 glycoprotein, a putative wall polymer cross-linker. Biochim Biophys Acta 1426, 385–400.[CrossRef] [Google Scholar]
  51. Popolo, L., Gilardelli, D., Bonfante, P. & Vai, M.(1997). Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1delta mutant of Saccharomyces cerevisiae. J Bacteriol 179, 463–469. [Google Scholar]
  52. Popolo, L., Gualtieri, T. & Ragni, E.(2001). The yeast cell-wall salvage pathway. Med Mycol 39, 111–121.[CrossRef] [Google Scholar]
  53. Queralt, E. & Igual, J. C.(2003). Cell cycle activation of the Swi6p transcription factor is linked to nucleocytoplasmic shuttling. Mol Cell Biol 23, 3126–3140.[CrossRef] [Google Scholar]
  54. Rajavel, M., Philip, B., Buehrer, B. M., Errede, B. & Levin, D. E.(1999). Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae. Mol Cell Biol 19, 3969–3976. [Google Scholar]
  55. Reinoso-Martin, C., Schüller, C., Schuetzer-Muehlbauer, M. & Kuchler, K.(2003). The yeast protein kinase C cell integrity pathway mediates tolerance to the antifungal drug caspofungin through activation of Slt2p mitogen-activated protein kinase signaling. Eukaryot Cell 2, 1200–1210.[CrossRef] [Google Scholar]
  56. Roder, K., Wolf, S. S., Larkin, K. J. & Schweizer, M.(1999). Interaction between the two ubiquitously expressed transcription factors NF-Y and Sp1. Gene 234, 61–69.[CrossRef] [Google Scholar]
  57. Rodriguez-Pachon, J. M., Martin, H., North, G., Rotger, R., Nombela, C. & Molina, M.(2002). A novel connection between the yeast Cdc42 GTPase and the Slt2-mediated cell integrity pathway identified through the effect of secreted Salmonella GTPase modulators. J Biol Chem 277, 27094–27102.[CrossRef] [Google Scholar]
  58. Roncero, C.(2002). The genetic complexity of chitin synthesis in fungi. Curr Genet 41, 367–378.[CrossRef] [Google Scholar]
  59. Roncero, C. & Duran, A.(1985). Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. J Bacteriol 163, 1180–1185. [Google Scholar]
  60. Roncero, C., Valdivieso, M. H., Ribas, J. C. & Duran, A.(1988). Effect of calcofluor white on chitin synthases from Saccharomyces cerevisiae. J Bacteriol 170, 1945–1949. [Google Scholar]
  61. Ruiz-Herrera, J., Gonzalez-Prieto, J. M. & Ruiz-Medrano, R.(2002). Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi. FEMS Yeast Res 1, 247–256.[CrossRef] [Google Scholar]
  62. Schneiter, R., Carter, A. T., Hernando, Y., Zellnig, G., Schweizer, L. M. & Schweizer, M.(2000). The importance of the five phosphoribosyl-pyrophosphate synthetase (Prs) gene products of Saccharomyces cerevisiae in the maintenance of cell integrity and the subcellular localization of Prs1p. Microbiology 146, 3269–3278. [Google Scholar]
  63. Schuetzer-Muehlbauer, M., Willinger, B., Krapf, G., Enzinger, S., Presterl, E. & Kuchler, K.(2003). The Candida albicans Cdr2p ATP-binding cassette (ABC) transporter confers resistance to caspofungin. Mol Microbiol 48, 225–235.[CrossRef] [Google Scholar]
  64. Torres, J., Di Como, C. J., Herrero, E. & De La Torre-Ruiz, M. A.(2002). Regulation of the cell integrity pathway by rapamycin-sensitive TOR function in budding yeast. J Biol Chem 277, 43495–43504.[CrossRef] [Google Scholar]
  65. Uetz, P., Giot, L., Cagney, G. & other authors(2000). A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627.[CrossRef] [Google Scholar]
  66. Verna, J., Lodder, A., Lee, K., Vagts, A. & Ballester, R.(1997). A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 94, 13804–13809.[CrossRef] [Google Scholar]
  67. Watanabe, Y., Irie, K. & Matsumoto, K.(1995). Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol Cell Biol 15, 5740–5749. [Google Scholar]
  68. Watanabe, Y., Takaesu, G., Hagiwara, M., Irie, K. & Matsumoto, K.(1997). Characterization of a serum response factor-like protein in Saccharomyces cerevisiae, Rlm1, which has transcriptional activity regulated by the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol Cell Biol 17, 2615–2623. [Google Scholar]
  69. Woods, R. A. & Gietz, R. D.(2001). High-efficiency transformation of plasmid DNA into yeast. Methods Mol Biol 177, 85–97. [Google Scholar]
  70. Zarzov, P., Mazzoni, C. & Mann, C.(1996). The SLT2(MPK1) MAP kinase is activated during periods of polarized cell growth in yeast. EMBO J 15, 83–91. [Google Scholar]
  71. Zhao, C., Jung, U. S., Garrett-Engele, P., Roe, T., Cyert, M. S. & Levin, D. E.(1998). Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol Cell Biol 18, 1013–1022. [Google Scholar]
  72. Zu, T., Verna, J. & Ballester, R.(2001). Mutations in WSC genes for putative stress receptors result in sensitivity to multiple stress conditions and impairment of Rlm1-dependent gene expression in Saccharomyces cerevisiae. Mol Genet Genomics 266, 142–155.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27373-0
Loading
/content/journal/micro/10.1099/mic.0.27373-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed