The C-terminal receiver domain of the bv. FixL protein is required for free-living microaerobic induction of the promoter Free

Abstract

The bv. VF39 FixL protein belongs to a distinct group of hybrid regulatory sensor proteins that bear a covalently linked C-terminal receiver domain. FixL has an unorthodox histidine kinase domain, which is shared with many other hybrid regulators. The purified FixL protein had autophosphorylation activity. A truncated protein, lacking the receiver domain, had a much-reduced autophosphorylation activity. However, this truncated protein still efficiently phosphorylated the purified receiver domain . This indicates that, in the full-length FixL protein, the conserved histidine residue in the kinase domain is phosphorylated only transiently and that most of the phosphoryl label accumulates in the C-terminal receiver domain. Gene-fusion studies showed that the gene is required for free-living microaerobic induction of the promoter. The presence of a functional gene is not required. An strain lacking could not be complemented with a truncated copy of the gene lacking the receiver domain. This indicates that the C-terminal receiver domain is an intermediate in the signal transduction pathway that links oxygen limitation to induction of the promoter in bv. VF39.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27323-0
2004-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503703.html?itemId=/content/journal/micro/10.1099/mic.0.27323-0&mimeType=html&fmt=ahah

References

  1. Akimoto S., Tanaka A., Nakamura K., Shiro Y., Nakamura H. 2003; O2-specific regulation of the ferrous haem-based sensor kinase FixL from Sinorhizobium meliloti and its aberrant inactivation in the ferric form. Biochem Biophys Res Commun 304:136–142 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Bauer C. E., Elsen S., Bird T. H. 1999; Mechanisms for redox control of gene expression. Annu Rev Microbiol 53:495–523 [CrossRef]
    [Google Scholar]
  4. Beringer J. E. 1974; R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84:188–198 [CrossRef]
    [Google Scholar]
  5. Clark S. R., Oresnik I. J., Hynes M. F. 2001; RpoN of Rhizobium leguminosarum bv.viciae strain VF39SM plays a central role in FnrN-dependent microaerobic regulation of genes involved in nitrogen fixation. Mol Gen Genet 264:623–633 [CrossRef]
    [Google Scholar]
  6. Colombo M. V., Gutierrez D., Palacios J. M., Imperial J., Ruiz-Argueso T. 2000; A novel autoregulation mechanism of fnrN expression in Rhizobium leguminosarum bv viciae . Mol Microbiol 36:477–486 [CrossRef]
    [Google Scholar]
  7. Colonna-Romano S., Arnold W., Boistard P., Priefer U. B, Schlüter A., Pühler A. 1990; An Fnr-like protein encoded in Rhizobium leguminosarum biovar viciae shows structural and functional homology to Rhizobium meliloti FixK. Mol Gen Genet 223:138–147 [CrossRef]
    [Google Scholar]
  8. David M., Daveran M. L., Batut J., Dedieu A., Domergue O., Ghai J., Hertig C., Boistard P., Kahn D. 1988; Cascade regulation of nif gene expression in Rhizobium meliloti . Cell 54:671–683 [CrossRef]
    [Google Scholar]
  9. D'hooghe I., Michiels J., Vanderleyden J. 1998; The Rhizobium etli FixL protein differs in structure from other known FixL proteins. Mol Gen Genet 257:576–580 [CrossRef]
    [Google Scholar]
  10. Dunham C. M., Dioum E. M., Tuckerman J. R., Gonzalez G., Scott W. G., Gilles-Gonzalez M. A. 2003; A distal arginine in oxygen-sensing haem-PAS domains is essential to ligand binding, signal transduction, and structure. Biochemistry 42:7701–7708 [CrossRef]
    [Google Scholar]
  11. Fischer H. M. 1994; Genetic regulation of nitrogen fixation in Rhizobia. Microbiol Rev 58:352–386
    [Google Scholar]
  12. Gilles-Gonzalez M. A., Gonzalez G. 1993; Regulation of the kinase activity of haem protein FixL from the two-component system FixL/FixJ of Rhizobium meliloti . J Biol Chem 268:16293–16297
    [Google Scholar]
  13. Gilles-Gonzalez M. A., Ditta G. S., Helinski D. R. 1991; A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti . Nature 350:170–172 [CrossRef]
    [Google Scholar]
  14. Gilles-Gonzalez M. A., Gonzalez G., Perutz M. F., Kiger L., Marden M. C., Poyart C. 1994; Haem-based sensors, exemplified by the kinase FixL, are a new class of haem protein with distinctive ligand binding and autoxidation. Biochemistry 33:8067–8073 [CrossRef]
    [Google Scholar]
  15. Gilles-Gonzalez M. A., Gonzalez G., Perutz M. F. 1995; Kinase activity of oxygen sensor FixL depends on the spin state of its haem iron. Biochemistry 34:232–236 [CrossRef]
    [Google Scholar]
  16. Gong W., Hao B., Mansy S. S., Gonzalez G., Gilles-Gonzalez M. A., Chan M. K. 1998; Structure of a biological oxygen sensor: a new mechanism for haem-driven signal transduction. Proc Natl Acad Sci U S A 95:15177–15182 [CrossRef]
    [Google Scholar]
  17. Green J., Scott C., Guest J. R. 2001; Functional versatility in the CRP-FNR superfamily of transcription factors: FNR and FLP. Adv Microb Physiol 44:1–34
    [Google Scholar]
  18. Hanahan D. 1985 In DNA Cloning Vol 1 pp 109–135 Edited by Glover D. M. Oxford: IRL Press;
    [Google Scholar]
  19. Kim D., Forst S. 2001; Genomic analysis of the histidine kinase family in bacteria and archaea. Microbiology 147:1197–1212
    [Google Scholar]
  20. Lois A. F., Weinstein M., Ditta G. S., Helinski D. R. 1993; Autophosphorylation and phosphatase activities of the oxygen-sensing protein FixL of Rhizobium meliloti are coordinately regulated by oxygen. J Biol Chem 268:4370–4375
    [Google Scholar]
  21. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Monson E. K., Weinstein M., Ditta G. S., Helinski D. R. 1992; The FixL protein of Rhizobium meliloti can be separated into a haem-binding oxygen-sensing domain and a functional C-terminal kinase domain. Proc Natl Acad Sci U S A 89:4280–4284 [CrossRef]
    [Google Scholar]
  23. Mukai M., Nakamura K., Nakamura H., Iizuka T., Shiro Y. 2000; Roles of Ile209 and Ile210 on the haem pocket structure and regulation of histidine kinase activity of oxygen sensor FixL from Rhizobium meliloti. Biochemistry 39:13810–13816 [CrossRef]
    [Google Scholar]
  24. Parkinson J. S., Kofoid E. C. 1992; Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71–112 [CrossRef]
    [Google Scholar]
  25. Patschkowski T., Priefer U. B, Schlüter A. 1996; Rhizobium leguminosarum bv.viciae contains a second fnr/fixK-like gene and an unusual fixL homologue. Mol Microbiol 21:267–280 [CrossRef]
    [Google Scholar]
  26. Perutz M. F., Paoli M., Lesk A. M. 1999; FixL, a haemoglobin that acts as an oxygen sensor: signalling mechanism and structural basis of its homology with PAS domains. Chem Biol 6:291–297 [CrossRef]
    [Google Scholar]
  27. Preisig O., Anthamatten D., Hennecke H. 1993; Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc Natl Acad Sci U S A 90:3309–3313 [CrossRef]
    [Google Scholar]
  28. Preisig O., Zufferey R., Thony-Meyer L., Appleby C. A., Hennecke H. 1996; A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain ofBradyrhizobium japonicum. J Bacteriol 178:1532–1538
    [Google Scholar]
  29. Prell J., Boesten B., Poole P., Priefer U. B. 2002; The Rhizobium leguminosarum bv viciae VF39 γ-aminobutyrate (GABA) aminotransferase gene (gabT) is induced by GABA and highly expressed in bacteroids. Microbiology 148:615–623
    [Google Scholar]
  30. Priefer U. B. 1989; Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39. J Bacteriol 171:6161–6168
    [Google Scholar]
  31. Reyrat J. M., David M., Blonski C., Boistard P., Batut J. 1993; Oxygen-regulated in vitro transcription of Rhizobium meliloti nifA and fixK genes. J Bacteriol 175:6867–6872
    [Google Scholar]
  32. Ried J. L., Collmer A. H. 1987; An nptI-sacB-sacR cartridge for constructing directed, unmarked mutations in Gram-negative bacteria by marker exchange-eviction mutagenesis. Gene 57:239–246 [CrossRef]
    [Google Scholar]
  33. Ronson C. W., Nixon B. T., Ausubel F. M. 1987; Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 49:579–581 [CrossRef]
    [Google Scholar]
  34. Schäfer A., Tauch A., Jager W., Kalinowski J., Thierbach G., Pühler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome ofCorynebacterium glutamicum . Gene 145:69–73 [CrossRef]
    [Google Scholar]
  35. Schlüter A., Patschkowski T., Quandt J., Selinger L. B., Weidner S., Kramer M., Zhou L., Hynes M. F., Priefer U. B. 1997; Functional and regulatory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39. Mol Plant–Microbe Interact 10:605–616 [CrossRef]
    [Google Scholar]
  36. Schultz J., Copley R. R., Doerks T., Ponting C. P., Bork P. 2000; smart: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28:231–234 [CrossRef]
    [Google Scholar]
  37. Simon R., Priefer U. B., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1:784–791 [CrossRef]
    [Google Scholar]
  38. Taylor B. L., Zhulin I. B. 1999; PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506
    [Google Scholar]
  39. Trzebiatowski J. R., Ragatz D. M., de Bruijn F. J. 2001; Isolation and regulation of Sinorhizobium meliloti 1021 loci induced by oxygen limitation. Appl Environ Microbiol 67:3728–3731 [CrossRef]
    [Google Scholar]
  40. Tuckerman J. R., Gonzalez G., Gilles-Gonzalez M. A. 2001; Complexation precedes phosphorylation for two-component regulatory system FixL/FixJ of Sinorhizobium meliloti . J Mol Biol 308:449–455 [CrossRef]
    [Google Scholar]
  41. Tuckerman J. R., Gonzalez G., Dioum E. M., Gilles-Gonzalez M. A. 2003; Ligand and oxidation-state specific regulation of the haem-based oxygen sensor FixL from Sinorhizobium meliloti . Biochemistry 41:6170–6177
    [Google Scholar]
  42. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 Erratum in Gene 114:81–83
    [Google Scholar]
  43. Zhulin I. B., Taylor B. L., Dixon R. 1997; PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem Sci 22:331–333 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27323-0
Loading
/content/journal/micro/10.1099/mic.0.27323-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed