1887

Abstract

Members of the genera and synthesize various -glucans (dextran, alternan and mutan). In , until now, the only glucosyltransferase (GTF) enzyme that has been characterized is of 121, the first GTF enzyme synthesizing a glucan (reuteran) that contains mainly -(1→4) linkages together with -(1→6) and -(1→4,6) linkages. Recently, partial sequences of glucansucrase genes were detected in other members of the genus . This paper reports, for the first time, isolation and characterization of dextransucrase and mutansucrase genes and enzymes from various species and the characterization of the glucan products synthesized, which mainly have -(1→6)- and -(1→3)-glucosidic linkages. The four GTF enzymes characterized from three different strains are highly similar at the amino acid level, and consequently their protein structures are very alike. Interestingly, these four GTFs have relatively large N-terminal variable regions, containing RDV repeats, and relatively short putative glucan-binding domains with conserved and less-conserved YG-repeating units. The three other GTF enzymes, isolated from , and , contain smaller variable regions and larger putative glucan-binding domains compared to the GTF enzymes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27321-0
2004-11-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503681.html?itemId=/content/journal/micro/10.1099/mic.0.27321-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Arguello-Morales, M. A., Remaud-Simeon, M., Pizzut, S., Sarcabal, P. & Monsan, P. ( 2000; ). Sequence analysis of the gene encoding alternansucrase, a sucrose glucosyltransferase from Leuconostoc mesenteroides NRRL B-1355. FEMS Microbiol Lett 182, 81–85.[CrossRef]
    [Google Scholar]
  3. Ausubel, F. M., Brent, R. E., Kingston, D. D., Moore, J. G., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1987; ). Current Protocols in Molecular Biology. New York: Wiley.
  4. Axelsson, L. ( 1998; ). Lactic acid bacteria: classification and physiology. In Lactic Acid Bacteria: Microbiology and Functional Aspects, pp. 1–71. Edited by W. Salminen & A. von Wright. New York: Marcel Dekker.
  5. Birnboim, H. C. & Doly, J. ( 1979; ). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7, 1513–1523.[CrossRef]
    [Google Scholar]
  6. Bozonnet, S., Dols-Laffargue, M., Fabre, E., Pizzut, S., Remaud-Simeon, M., Monsan, P. & Willemot, R. M. ( 2002; ). Molecular characterization of DSR-E, an α-1,2 linkage-synthesizing dextransucrase with two catalytic domains. J Bacteriol 184, 5753–5761.[CrossRef]
    [Google Scholar]
  7. Casas, I. A., Edens, F. W. & Dobrogosz, W. J. ( 1998; ). Lactobacilus reuteri: an effective probiotic for poultry and other animals. In Lactic Acid Bacteria: Microbiology and Functional Aspects, pp. 475–518. Edited by W. Salminen & A. von Wright. New York: Marcel Dekker.
  8. Cerning, J. ( 1990; ). Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev 7, 113–130.
    [Google Scholar]
  9. Chaplin, M. F. ( 1982; ). A rapid and sensitive method for the analysis of carbohydrate components in glycoproteins using gas-liquid chromatography. Anal Biochem 123, 336–341.[CrossRef]
    [Google Scholar]
  10. Chung, C. H. & Day, D. F. ( 2002; ). Glucooligosaccharides from Leuconostoc mesenteroides B-742 (ATCC 13146): a potential prebiotic. J Ind Microbiol Biotechnol 29, 196–199.[CrossRef]
    [Google Scholar]
  11. Devulapalle, K. S., Goodman, S. D., Gao, Q., Hemsley, A. & Mooser, G. ( 1997; ). Knowledge-based model of a glucosyltransferase from the oral bacterial group of mutans streptococci. Protein Sci 6, 2489–2493.
    [Google Scholar]
  12. De Vuyst, L. & Degeest, B. ( 1999; ). Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23, 153–177.[CrossRef]
    [Google Scholar]
  13. Funane, K., Mizuno, K., Takahara, H. & Kobayashi, M. ( 2000; ). Gene encoding a dextransucrase-like protein in Leuconostoc mesenteroides NRRL B-512F. Biosci Biotechnol Biochem 64, 29–38.[CrossRef]
    [Google Scholar]
  14. Funane, K., Ishii, T., Matsushita, M., Hori, K., Mizuno, K., Takahara, H., Kitamura, Y. & Kobayashi, M. ( 2001; ). Water-soluble and water-insoluble glucans produced by Escherichia coli recombinant dextransucrases from Leuconostoc mesenteroides NRRL B-512F. Carbohydr Res 334, 19–25.[CrossRef]
    [Google Scholar]
  15. Ganzle, M. G., Holtzel, A., Walter, J., Jung, G. & Hammes, W. P. ( 2000; ). Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol 66, 4325–4333.[CrossRef]
    [Google Scholar]
  16. Giffard, P. M. & Jacques, N. A. ( 1994; ). Definition of a fundamental repeating unit in streptococcal glucosyltransferase glucan-binding regions and related sequences. J Dent Res 73, 1133–1141.
    [Google Scholar]
  17. Hakomori, S. ( 1964; ). A rapid permethylation of glycolipid and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J Biochem 55, 205–208.
    [Google Scholar]
  18. Hamada, S. & Slade, H. D. ( 1980; ). Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44, 331–384.
    [Google Scholar]
  19. Hanada, N., Fukushima, K., Nomura, Y., Senpuku, H., Hayakawa, M., Mukasa, H., Shiroza, T. & Abiko, Y. ( 2002; ). Cloning and nucleotide sequence analysis of the Streptococcus sobrinus gtfU gene that produces a highly branched water-soluble glucan. Biochim Biophys Acta 1570, 75–79.[CrossRef]
    [Google Scholar]
  20. Harris, P. J., Henry, R. J., Blakeney, A. B. & Stone, B. A. ( 1984; ). An improved procedure for the methylation analysis of oligosaccharides and polysaccharides. Carbohydr Res 127, 59–73.[CrossRef]
    [Google Scholar]
  21. Janecek, S., Svensson, B. & Russell, R. R. ( 2000; ). Location of repeat elements in glucansucrases of Leuconostoc and Streptococcus species. FEMS Microbiol Lett 192, 53–57.[CrossRef]
    [Google Scholar]
  22. Jansson, P.-E., Kenne, L., Liedgren, H., Lindberg, B. & Lönngren, J. ( 1976; ). A practical guide to the methylation analysis of carbohydrates. Chem Commun Univ Stockholm 8, 1–74.
    [Google Scholar]
  23. Kabuki, T., Saito, T., Kawai, Y., Uemura, J. & Itoh, T. ( 1997; ). Production, purification and characterization of reutericin 6, a bacteriocin with lytic activity produced by Lactobacillus reuteri LA6. Int J Food Microbiol 34, 145–156.[CrossRef]
    [Google Scholar]
  24. Kim, D. & Robyt, J. F. ( 1994; ). Production and selection of mutants of Leuconostoc mesenteroides constitutive for glucansucrases. Enzyme Microb Technol 16, 659–664.[CrossRef]
    [Google Scholar]
  25. Kitaoka, M. & Robyt, J. F. ( 1998; ). Use of microtiter plate screening method for obtaining Leuconostoc mesenteroides mutants constitutive for glucansucrase. Enzyme Microb Technol 22, 527–531.[CrossRef]
    [Google Scholar]
  26. Konishi, N., Torii, Y., Yamamoto, T. & 8 other authors ( 1999; ). Structure and enzymatic properties of genetically truncated forms of the water-insoluble glucan-synthesizing glucosyltransferase from Streptococcus sobrinus. J Biochem 126, 287–295.[CrossRef]
    [Google Scholar]
  27. Kralj, S., van Geel-Schutten, G. H., Rahaoui, H., Leer, R. J., Faber, E. J., van der Maarel, M. J. & Dijkhuizen, L. ( 2002; ). Molecular characterization of a novel glucosyltransferase from Lactobacillus reuteri strain 121 synthesizing a unique, highly branched glucan with α-(1→4) and α-(1→6) glucosidic bonds. Appl Environ Microbiol 68, 4283–4291.[CrossRef]
    [Google Scholar]
  28. Kralj, S., van Geel-Schutten, G. H., van der Maarel, M. J. & Dijkhuizen, L. ( 2003; ). Efficient screening methods for glucosyltransferase genes in Lactobacillus strains. Biocatal Biotransform 21, 181–187.[CrossRef]
    [Google Scholar]
  29. Kralj, S., van Geel-Schutten, G. H., van der Maarel, M. J. & Dijkhuizen, L. ( 2004; ). Biochemical and molecular characterization of Lactobacillus reuteri 121 reuteransucrase. Microbiology 150, 2099–2112.[CrossRef]
    [Google Scholar]
  30. Leroy, F. & De Vuyst, L. ( 2004; ). Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15, 67–78.[CrossRef]
    [Google Scholar]
  31. Loesche, W. J. ( 1986; ). Role of Streptococcus mutans in human dental decay. Microbiol Rev 50, 353–380.
    [Google Scholar]
  32. Monchois, V., Arguello-Morales, M. A. & Russell, R. R. ( 1999a; ). Isolation of an active catalytic core of Streptococcus downei MFe28 GTF-I glucosyltransferase. J Bacteriol 181, 2290–2292.
    [Google Scholar]
  33. Monchois, V., Vignon, M. & Russell, R. R. ( 1999b; ). Isolation of key amino acid residues at the N-terminal end of the core region Streptococcus downei glucansucrase, GTF-I. Appl Microbiol Biotechnol 52, 660–665.[CrossRef]
    [Google Scholar]
  34. Monchois, V., Willemot, R. M. & Monsan, P. ( 1999c; ). Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol Rev 23, 131–151.
    [Google Scholar]
  35. Monsan, P. & Paul, F. ( 1995; ). Oligosaccharide feed additives. In Biotechnology in Animal Feeds and Animal Feeding. pp. 233–245. Edited by R. J. Wallace & A. Chesson. Weinheim: VCH.
  36. Nagy, I., Schoofs, G., Compernolle, F., Proost, P., Vanderleyden, J. & de Mot, R. ( 1995; ). Degradation of the thiocarbamate herbicide EPTC (S-ethyl dipropylcarbamothioate) and biosafening by Rhodococcus sp. strain NI86/21 involve an inducible cytochrome P-450 system and aldehyde dehydrogenase. J Bacteriol 177, 676–687.
    [Google Scholar]
  37. Neubauer, H., Bauche, A. & Mollet, B. ( 2003; ). Molecular characterization and expression analysis of the dextransucrase DsrD of Leuconostoc mesenteroides Lcc4 in homologous and heterologous Lactococcus lactis cultures. Microbiology 149, 973–982.[CrossRef]
    [Google Scholar]
  38. Olano-Martin, E., Mountzouris, K. C., Gibson, G. R. & Rastall, R. A. ( 2000; ). In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria. Br J Nutr 83, 247–255.
    [Google Scholar]
  39. Sambrook, J., Fritsch, E. F. & Maniates, T. ( 1989; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  40. Sidebotham, R. L. ( 1974; ). Dextrans. Adv Carbohydr Chem Biochem 30, 371–444.
    [Google Scholar]
  41. Smith, M. R., Zahnley, J. C., Wong, R. Y., Lundin, R. E. & Ahlgren, J. A. ( 1998; ). A mutant strain of Leuconostoc mesenteroides B-1355 producing a glucosyltransferase synthesizing α(1→2) glucosidic linkages. J Ind Microbiol Biotechnol 21, 37–45.[CrossRef]
    [Google Scholar]
  42. Talarico, T. L., Casas, I. A., Chung, T. C. & Dobrogosz, W. J. ( 1988; ). Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrob Agents Chemother 32, 1854–1858.[CrossRef]
    [Google Scholar]
  43. Tieking, M., Korakli, M., Ehrmann, M. A., Ganzle, M. G. & Vogel, R. F. ( 2003; ). In situ production of exopolysaccharides during Sourdough fermentation by cereal and intestinal isolates of lactic acid bacteria. Appl Environ Microbiol 69, 945–952.[CrossRef]
    [Google Scholar]
  44. Triglia, T., Peterson, M. G. & Kemp, D. J. ( 1988; ). A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res 16, 8186.[CrossRef]
    [Google Scholar]
  45. Valeur, N., Engel, P., Carbajal, N., Connolly, E. & Ladefoged, K. ( 2004; ). Colonization and immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract. Appl Environ Microbiol 70, 1176–1181.[CrossRef]
    [Google Scholar]
  46. van Geel-Schutten, G. H. ( 2003; ). Novel glucans and novel glucansucrases derived from lactic acid bacteria. Patent number: WO 03/008618.
  47. van Geel-Schutten, G. H., Flesch, F., ten Brink, B., Smith, M. R. & Dijkhuizen, L. ( 1998; ). Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharides. Appl Microbiol Biotechnol 50, 697–703.[CrossRef]
    [Google Scholar]
  48. van Geel-Schutten, G. H., Faber, E. J., Smit, E., Bonting, K., Smith, M. R., Ten Brink, B., Kamerling, J. P., Vliegenthart, J. F. & Dijkhuizen, L. ( 1999; ). Biochemical and structural characterization of the glucan and fructan exopolysaccharides synthesized by the Lactobacillus reuteri wild-type strain and by mutant strains. Appl Environ Microbiol 65, 3008–3014.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27321-0
Loading
/content/journal/micro/10.1099/mic.0.27321-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error