1887

Abstract

Using the complete genome sequence from C58, the authors identified a secondary metabolite gene cluster that encodes the biosynthesis of a metabolite with siderophore activity. Support for this conclusion came from genetic and regulatory analysis of the gene cluster, along with the purification of a metabolite from C58 with iron-chelating activity. Genetic analysis of mutant strains disrupted in this gene cluster showed that these strains grew more slowly than the wild-type strain in medium lacking iron. Additionally, the mutant strains failed to produce a chrome-azurol-S-reactive material in liquid or solid medium, and failed to produce the metabolite with iron-chelating characteristics that was identified in the wild-type strain. Addition of this purified metabolite to the growth medium of a mutant strain restored its ability to grow in iron-deficient medium. Furthermore, expression of this gene cluster was induced by growth under iron-limiting conditions, suggesting that expression of this gene cluster occurs when iron is scarce. These data are all consistent with the proposal that the proteins encoded by this gene cluster are involved in the production of a siderophore. Interestingly, these proteins show the highest level of amino acid similarity to proteins from a gene cluster found in the filamentous cyanobacterium sp. PCC7120, rather than to known siderophore biosynthetic enzymes. Given these properties, it is proposed that the siderophore produced by C58 will have a unique chemical structure. Production of the siderophore was not required for virulence of when tested with a standard stem inoculation assay.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27319-0
2004-11-01
2020-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503857.html?itemId=/content/journal/micro/10.1099/mic.0.27319-0&mimeType=html&fmt=ahah

References

  1. Acebal C., Alcazar R., Can∼edo L. M., de la Calle F., Rodriquez P., Romero F., Fernandez Puentes J. L. 1998; Two marine Agrobacterium producers of sesbanamide antibiotics. J Antibiot51:64–67[CrossRef]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol215:403–410[CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Zhang J., Zhang Z., Miller W., Lipman D. J, Schäffer A. A.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402[CrossRef]
    [Google Scholar]
  4. Andrews S. C., Robinson A. K., Rodríguez-Quiñones F. 2003; Bacterial iron homeostasis. FEMS Microbiol Rev27:215–237[CrossRef]
    [Google Scholar]
  5. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1994; Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  6. Baker A. 1981; Accumulators and excluders – strategies in the response of plants to heavy metals. J Plant Nutr3:643–654[CrossRef]
    [Google Scholar]
  7. Bentley S. D., Chater K. F., Cerdeno-Tarraga A. M.. 40 other authors 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature417:141–147[CrossRef]
    [Google Scholar]
  8. Beringer J. E. 1974; R-factor transfer in Rhizobium leguminosarum biovar phaseoli. J Gen Microbiol84:188–198[CrossRef]
    [Google Scholar]
  9. Bittinger M. A., Handelsman J. 2000; Identification of genes in the RosR regulon of Rhizobium etli. J Bacteriol182:1706–1713[CrossRef]
    [Google Scholar]
  10. Braun V., Killmann H. 1999; Bacterial solutions to the iron-supply problem. Trends Biochem Sci24:104–109[CrossRef]
    [Google Scholar]
  11. Braun V., Mahren S., Ogierman M. 2003; Regulation of the FecI-type ECF sigma factors by transmembrane signalling. Curr Opin Microbiol6:173–180[CrossRef]
    [Google Scholar]
  12. Cañedo L. M., de la Fuente J. A., Gesto C., Ferreiro M. J., Riguera R, Jiménez C. 1999; Agrochelin, a new cytotoxic alkaloid from the marine bacteria Agrobacterium sp. Tetrahedron Lett40:6841–6844[CrossRef]
    [Google Scholar]
  13. Challis G. L., Ravel J. 2000; Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: structure prediction from the sequence of its non-ribosomal peptide synthetase. FEMS Microbiol Lett187:111–114[CrossRef]
    [Google Scholar]
  14. Cornelis P., Matthijs S. 2002; Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol4:787–798[CrossRef]
    [Google Scholar]
  15. Crosa J. H., Walsh C. T. 2002; Genetic assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev66:223–249[CrossRef]
    [Google Scholar]
  16. Faraldo-Gomez J. D., Sansom M. S. 2003; Aquisition of siderophores in Gram-negative bacteria. Nat Rev Mol Cell Biol4:105–116[CrossRef]
    [Google Scholar]
  17. Goodner B., Hinkle G., Gattung S.. 28 other authors 2001; Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science294:2323–2328[CrossRef]
    [Google Scholar]
  18. Guerinot M. L. 1991; Iron uptake and metabolism in the rhizobia/legume symbiosis. Plant Soil130:199–209[CrossRef]
    [Google Scholar]
  19. Hori K., Yamamoto Y., Minetoki T., Kurotsu T., Kanda M., Miura S., Okamura K., Furuyama J., Saito Y. 1989; Molecular cloning and nucleotide sequence of the gramicidin S synthetase 1 gene. J Biochem106:639–645
    [Google Scholar]
  20. Jen G. C., Chilton M.-D. 1986; Activity of T-DNA borders in plant cell transformation by mini-T plasmids. J Bacteriol166:491–499
    [Google Scholar]
  21. Kaneko T., Nakamura Y., Wolk C. P.. 19 other authors 2001; Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8:205–213[CrossRef]
    [Google Scholar]
  22. Krätzschmar J., Krause M., Marahiel M. A. 1989; Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J Bacteriol171:5422–5429
    [Google Scholar]
  23. Leong S. A., Neilands J. B. 1981; Relationship of siderophore-mediated iron assimilation to virulence in crown gall disease. J Bacteriol147:482–491
    [Google Scholar]
  24. Leong S. A., Neilands J. B. 1982; Siderophore production by phytopathogenic microbial species. Arch Biochem Biophys218:351–359[CrossRef]
    [Google Scholar]
  25. May J. J., Wendrich T. M., Marahiel M. A. 2001; the dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J Biol Chem 2001;7209–7217
    [Google Scholar]
  26. Müller K., Matzanke B. F., Trautwein A. X., Hantke K, Schünemann V.. 1998; FhuF, an iron-regulated protein of Escherichia coli with a new type of [2Fe–2S] center. Eur J Biochem258:1001–1008[CrossRef]
    [Google Scholar]
  27. Neilands J. B. 1995; Siderophores: structure and function of microbial iron transport compounds. J Biol Chem270:26723–26726[CrossRef]
    [Google Scholar]
  28. Ochs M., Veitinger S., Kim I., Welz D., Angerer A., Braun V. 1995; Regulation of citrate-dependent iron transport of Escherichia coli: FecR is required for transcription activation by FecI. Mol Microbiol15:119–132[CrossRef]
    [Google Scholar]
  29. Ochsner U. A., Vasil A. I., Vasil M. L. 1995; Role of the ferric uptake regulator of Pseudomonas aeruginosa in the regulation of siderophores and exotoxin A expression: purification and activity on iron-regulated promoters. J Bacteriol177:7194–7201
    [Google Scholar]
  30. Ong S. A., Peterson T., Neilands J. B. 1979; Agrobactin, a siderophore from Agrobacterium tumefaciens. J Biol Chem254:1860–1865
    [Google Scholar]
  31. Palumbo J. D., Phillips D. A., Kado C. I. 1998; Characterization of a new Agrobacterium tumefaciens strain from alfalfa (Medicago sativa L.). Arch Microbiol169:381–386[CrossRef]
    [Google Scholar]
  32. Penyalver R., Oger P., Lopez M. M., Farrand S. K. 2001; Iron-binding compounds from Agrobacterium spp. biological control strain Agrobacterium rhizogenes K84 produces a hydroxamate siderophore. Appl Environ Microbiol67:654–664[CrossRef]
    [Google Scholar]
  33. Prentki P., Krisch H. M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene29:303–313[CrossRef]
    [Google Scholar]
  34. Quadri L. E. N. 2000; Assembly of aryl-capped siderophores by modular peptide synthetases and polyketide synthases. Mol Microbiol37:1–12[CrossRef]
    [Google Scholar]
  35. Quandt J., Hynes M. F. 1993; Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene127:15–21[CrossRef]
    [Google Scholar]
  36. Ravel J., Cornelis P. 2003; Genomics of pyoverdine-mediated iron uptake in pseudomonads. Trends Microbiol11:195–200[CrossRef]
    [Google Scholar]
  37. Reeve W. G., Tiwari R. P., Worsley P. S., Dilworth M. J., Glenn A. R., Howieson J. G. 1999; Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Microbiology145:1307–1316[CrossRef]
    [Google Scholar]
  38. Rosen R., Matthysse A. G., Becher D., Biran D., Yura T., Hecker M., Ron E. Z. 2003; Proteome analysis of plant-induced proteins of Agrobacterium tumefaciens. FEMS Microbiol Ecol44:355–360[CrossRef]
    [Google Scholar]
  39. Schwyn B., Neilands J. B. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem160:47–56[CrossRef]
    [Google Scholar]
  40. Sexton R., Gill P. R., Callanan M. J., O'Sullivan D. J., Dowling D. N., O'Gara F. 1995; Iron-responsive gene expression in Pseudomonas fluorescens M114 – cloning and characterization of a transcription activating factor, PbrA. Mol Microbiol15:297–306[CrossRef]
    [Google Scholar]
  41. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology1:784–791[CrossRef]
    [Google Scholar]
  42. Simon R., O'Connell M., Labes M., Pühler A. 1986; Plasmid vectors for the genetic analysis and manipulation of rhizobia and other Gram-negative bacteria. Methods Enzymol118:640–659
    [Google Scholar]
  43. Sonoda H., Suzuki K., Yoshida K. 2002; Gene cluster for ferric iron uptake in Agrobacterium tumefaciens MAFF301001. Genes Genet Syst77:137–146[CrossRef]
    [Google Scholar]
  44. Todd J., Wexler M., Sawers G., Yeoman K. H., Poole P. S., Johnston A. W. B. 2002; RirA, an iron-responsive regulator in the symbiotic bacterium Rhizobium leguminosarum. Microbiology148:4059–4071
    [Google Scholar]
  45. Venturi V., Ottevanger C., Bracke M., Weisbeek P. 1995; Iron regulation of siderophore biosynthesis and transport in Pseudomonas putida WCS358 – involvement of a transcriptional activator and of the Fur protein. Mol Microbiol15:1081–1093[CrossRef]
    [Google Scholar]
  46. Vincent J. M. 1970; A Manual for the Practical Study of Root Nodule Bacteria Oxford, UK: Blackwell Scientific Publications;
    [Google Scholar]
  47. Visca P., Leoni L., Wilson M. J., Lamont I. L. 2002; Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol45:1177–1190[CrossRef]
    [Google Scholar]
  48. Walsh C. 2003; Antibiotics Washington, DC: American Society for Microbiology;
    [Google Scholar]
  49. Winkelmann G. 1991; CRC Handbook of Microbial Iron Chelates Boca Raton, FL: CRC Press;
    [Google Scholar]
  50. Winkelmann G. 2002; Microbial siderophore-mediated transport. Biochem Soc Transact30:691–696
    [Google Scholar]
  51. Wood D. W., Setubal J. C., Kaul R.. 48 other authors 2001; The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science294:2317–2323[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27319-0
Loading
/content/journal/micro/10.1099/mic.0.27319-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error