The complete sequences of plasmids pB2 and pB3 provide evidence for a recent ancestor of the IncP-1 group without any accessory genes Free

Abstract

The nucleotide sequences of the broad-host-range antibiotic resistance plasmids pB2 (61 kb) and pB3 (56 kb), which were isolated from a wastewater treatment plant, were determined and analysed. Both have a nearly identical IncP-1 backbone, which diverged early from the sequenced IncP-1 plasmids R751, pB10, pJP4, pADP1 and pUO1. In contrast to the latter plasmids, the pB2 and pB3 backbone does not seem to have undergone any deletions. The complete partition gene is located downstream of the mating pair formation () module. A 14·4 kb or 19·0 kb mobile genetic element is present between and of pB3 and pB2, respectively. This region is typical for insertions in IncP-1 plasmids, but the insertion site is unique. Both elements differ only by a duplication in pB2 of a ()– fragment. The 5 bp target site duplication and the 26 bp inverted repeats flanking the mobile genetic elements are still intact, indicating that the insertion occurred recently. The element consists of three nested transposable elements: (i) a relict of a Tn-like transposon with a gene for a new class D -lactamase ( ); (ii) within that, another Tn-like element with a class 1 integron harbouring the gene cassettes for a chloramphenicol efflux protein and encoding a streptomycin/spectinomycin adenylyltransferase, and a copy of IS; (iii) into the integrase gene a tetracycline resistance module ()– flanked by copies of IS is inserted. Interestingly, in contrast to all other IncP-1 plasmids analysed so far, the region between and is not interrupted by accessory genes, and there is no indication that previously inserted accessory genes have subsequently been deleted. The genes are also missing in that region and should thus be considered acquired genes. These findings, together with the fact that IncP-1 plasmids acquired accessory elements at various positions in the backbone, suggest that IncP-1 plasmids without any accessory genes exist in microbial communities. They must occasionally acquire accessory genes by transposition events, resulting in those plasmids that have been found based on selectable phenotypic traits.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27304-0
2004-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503591.html?itemId=/content/journal/micro/10.1099/mic.0.27304-0&mimeType=html&fmt=ahah

References

  1. Bergstrom C. T., Lipsitch M., Levin B. 2000; Natural selection, infection transfer and the existence conditions for bacterial plasmids. Genetics 155:1505–1519
    [Google Scholar]
  2. Bingle L. E. H., Zatyka M., Manzoor S. E., Thomas C. M. 2003; Co-operative interactions control conjugative transfer of broad host-range plasmid RK2: full effect of minor changes in TrbA operator depends on KorB. Mol Microbiol 49:1095–1108 [CrossRef]
    [Google Scholar]
  3. Bouma J. E., Lenski R. E. 1988; Evolution of a bacteria/plasmid association. Nature 335:351–352 [CrossRef]
    [Google Scholar]
  4. Boyd D., Peters G. A., Cloeckaert A., Boumedine K. S., Chaslus-Dancla E., Imberechts H., Mulvey M. R. 2001; Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J Bacteriol 183:5725–5732 [CrossRef]
    [Google Scholar]
  5. Couture F., Lachapelle J., Levesque R. C. 1992; Phylogeny of LCR-1 and OXA-5 with class A and class D beta-lactamases. Mol Microbiol 6:1693–1705 [CrossRef]
    [Google Scholar]
  6. Davison J. 1999; Genetic exchange between bacteria in the environment. Plasmid 42:73–91 [CrossRef]
    [Google Scholar]
  7. Dröge M., Pühler A., Selbitschka W. 2000; Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge. Mol Gen Genet 263:471–482 [CrossRef]
    [Google Scholar]
  8. Enne V. I., Bennett P. M., Livermore D. M., Hall L. M. C. 2004; Enhancement of host fitness by the sul2-encoding plasmid p9123 in the absence of selected pressure. J Antimicrob Chemother 53:958–963 [CrossRef]
    [Google Scholar]
  9. Ewing B., Hillier L., Wendl M., Green P. 1998; Basecalling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185 [CrossRef]
    [Google Scholar]
  10. Ghigo J. M. 2001; Natural conjugative plasmids induce bacterial biofilm development. Nature 412:442–445 [CrossRef]
    [Google Scholar]
  11. Grant S. G. N., Jessee J., Bloom F. R., Hanahan D. 1990; Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649 [CrossRef]
    [Google Scholar]
  12. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  13. Heuer H., Wellington E. M. H, Krögerrecklenfort E. 8 other authors 2002; Gentamicin resistance genes in environmental bacteria: prevalence and transfer. FEMS Microbiol Ecol 42:289–302 [CrossRef]
    [Google Scholar]
  14. Hill K. E., Weightman A. J., Fry J. C. 1992; Isolation and screening of plasmids from the epilithon which mobilize recombinant plasmid pD10. Appl Environ Microbiol 58:1292–1300
    [Google Scholar]
  15. Klockgether J., Reva O., Larbig K., Tümmler B. 2004; Sequence analysis of the mobile genome island pKLC102 of Pseudomonas aeruginosa C. J Bacteriol 186:518–534 [CrossRef]
    [Google Scholar]
  16. L'Abee-Lund T. M., Sorum H. 2002; A global non-conjugative Tet C plasmid, pRAS3, from Aeromonas salmonicida . Plasmid 47:172–181 [CrossRef]
    [Google Scholar]
  17. Martinez B., Tomkins J., Wackett L. P., Wing R., Sadowsky M. J. 2001; Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. . J Bacteriol 183:5684–5697 [CrossRef]
    [Google Scholar]
  18. Meyer F., Goesmann A., McHardy A. C. 8 other authors 2003; GenDB – an open source genome annotation system for prokaryote genomes. Nucleic Acids Res 31:2187–2195 [CrossRef]
    [Google Scholar]
  19. Pai H., Jacoby G. A. 2001; Sequences of the NPS-1 and TLE-1 beta-lactamase genes. Antimicrob Agents Chemother 45:2947–2948 [CrossRef]
    [Google Scholar]
  20. Pansegrau W., Lanka E., Barth P. T. 14 other authors 1994; Complete nucleotide-sequence of Birmingham IncP-alpha plasmids – Compilation and comparative analysis. J Mol Biol 239:623–663 [CrossRef]
    [Google Scholar]
  21. Partridge S. R., Brown H. J., Hall R. M. 2002; Characterization and movement of the class 1 integron known as Tn2521 and Tn1405. Antimicrob Agents Chemother 46:1288–1294 [CrossRef]
    [Google Scholar]
  22. Partridge S. R., Recchia G. D., Stokes H. W., Hall R. M. 2001; Family of class 1 integrons related to In4 from Tn1696. Antimicrob Agents Chemother 45:3014–3020 [CrossRef]
    [Google Scholar]
  23. Radström P., Skold O., Swedberg G., Flensburg J., Roy P. H., Sundström L. 1994; Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn7, Mu, and the retroelements. J Bacteriol 176:3257–3268
    [Google Scholar]
  24. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Schlüter A., Heuer H., Szczepanowski R., Forney L. J., Thomas C. M., Top E. M, Pühler A. 2003; The 64 508 bp IncP-1β antibiotic multiresistance plasmid pB10 isolated from a wastewater treatment plant provides evidence for recombination between members of different branches of the IncP-1β group. Microbiology 149:3139–3153 [CrossRef]
    [Google Scholar]
  26. Schnabel E. L., Jones A. L. 1999; Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards. Appl Environ Microbiol 65:4898–4907
    [Google Scholar]
  27. Sikorski R. S., Michaub W., Levin H. L., Boeke J. D., Hieter P. 1990; Trans-kingdom promiscuity. Nature 345:581–582
    [Google Scholar]
  28. Smith C. A., Thomas C. M. 1987; Comparison of the organisation of the genomes of phenotypically diverse plasmids of incompatibility group P: members of the IncPβ sub-group are closely related. Mol Gen Genet 206:419–427 [CrossRef]
    [Google Scholar]
  29. Smith C. A., Pinkney M., Guiney D. G., Thomas C. M. 1993; The ancestral IncP replication system consisted of contiguous oriV and trfA segments as deduced from a comparison of the nucleotide sequences of diverse IncP plasmids. J Gen Microbiol 139:1761–1766 [CrossRef]
    [Google Scholar]
  30. Sorum H., L'Abee-Lund T. M., Solberg A., Wold A. 2003; Integron-containing IncU R plasmids pRAS1 and pAr-32 from the fish pathogen Aeromonas salmonicida . Antimicrob Agents Chemother 47:1285–1290 [CrossRef]
    [Google Scholar]
  31. Sota M., Kawasaki H., Tsuda M. 2003; Structure of haloacetate-catabolic IncP-1β plasmid pUO1 and genetic mobility of its residing haloacetate-catabolic transposon. J Bacteriol 185:6741–6745 [CrossRef]
    [Google Scholar]
  32. Swofford D. L. 1991; paup: Phylogenetic Analysis Using Parsimony, Version 3.1. Computer program distributed by the Illinois Natural History Survey. Champaign, Illinois:
  33. Tauch A., Kalinowski J., Thierbach G, Götker S., Pühler A. 2002; The 27·8-kb R-plasmid pTET3 from Corynebacterium glutamicum encodes the aminoglycoside adenyltransferase gene cassette aadA9 and the regulated tetracycline efflux system Tet 33 flanked by active copies of the widespread insertion sequence IS6100. Plasmid 48:117–129 [CrossRef]
    [Google Scholar]
  34. Tauch A., Kalinowski J., Thierbach G, Pühler A. 2003a; Plasmids in Corynebacterium glutamicum and their molecular classification by comparative genomics. J Biotechnol 104:27–40 [CrossRef]
    [Google Scholar]
  35. Tauch A., Bischoff N., Goesmann A., Meyer F, Schlüter A., Pühler A. 2003b; The 79,370-bp conjugative plasmid pB4 consists of an IncP-1β backbone loaded with a chromate resistance transposon, the strA–strB streptomycin resistance gene pair, the oxacillinase gene blaNPS-1, and a tripartite antibiotic efflux system of the resistance-nodulation-division family. Mol Gen Genomics 268:570–584
    [Google Scholar]
  36. Thomas C. M., Smith C. A. 1987; Incompatibility group P plasmids: genetics, evolution, and use in genetic manipulation. Annu Rev Microbiol 41:77–101 [CrossRef]
    [Google Scholar]
  37. Thorsted P. A., Macartney D. P., Akhtar P. 9 other authors 1998; Complete sequence of the IncPβ plasmid R751: Implications for evolution and organisation of the IncP backbone. J Mol Biol 282:969–990 [CrossRef]
    [Google Scholar]
  38. Top E. M., Moënne-Loccoz Y., Pembroke T., Thomas C. M. 2000; Phenotypic traits conferred by plasmids. In The horizontal gene pool pp 249–286 Edited by Thomas C. M. Amsterdam: Harwood Academic Publishers;
    [Google Scholar]
  39. Top E., De Smet I., Mergeay M., Verstraete W. 1994; Exogenous isolation of mobilizing plasmids from polluted soils and sludges. Appl Environ Microbiol 60:831–839
    [Google Scholar]
  40. Top E., Vanrolleghem P., Mergeay M., Verstraete W. 1992; Determination of the mechanism of retrotransfer by mechanistic mathematical modeling. J Bacteriol 174:5953–5960
    [Google Scholar]
  41. Tralau T., Cook A. M., Ruff J. 2001; Map of the IncP-1β plasmid pTSA encoding the widespread genes (tsa) for p-toluenesulfonate degradation in Comamonas testosteroni T-2. Appl Environ Microbiol 67:1508–1516 [CrossRef]
    [Google Scholar]
  42. Trefault N., De la Iglesia R., Molina A. M., Manzano M., Ledger T., Stuardo M, Pérez-Pantoja D., Sánchez M. A., González B. 2004; Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ Microbiol 6:655–668 [CrossRef]
    [Google Scholar]
  43. Trieu-Cuot P., Carlier C., Martin P., Courvalin P. 1987; Plasmid transfer by conjugation from Escherichia coli to Gram-positive bacteria. FEMS Microbiol Lett 48:289–294 [CrossRef]
    [Google Scholar]
  44. Zatyka M., Jagura-Burdzy G., Thomas C. M. 1997; Transcriptional and translational control of the genes for the mating pair formation apparatus of promiscuous IncP plasmids. J Bacteriol 179:7201–7209
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27304-0
Loading
/content/journal/micro/10.1099/mic.0.27304-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed