1887

Abstract

The nitrogen cycle (N-cycle) in the biosphere, mainly driven by prokaryotes, involves different reductive or oxidative reactions used either for assimilatory purposes or in respiratory processes for energy conservation. As the N-cycle has important agricultural and environmental implications, bacterial nitrogen metabolism has become a major research topic in recent years. Archaea are able to perform different reductive pathways of the N-cycle, including both assimilatory processes, such as nitrate assimilation and N fixation, and dissimilatory reactions, such as nitrate respiration and denitrification. However, nitrogen metabolism is much less known in archaea than in bacteria. The availability of the complete genome sequences of several members of the eury- and crenarchaeota has enabled new approaches to the understanding of archaeal physiology and biochemistry, including metabolic reactions involving nitrogen compounds. Comparative studies reveal that significant differences exist in the structure and regulation of some enzymes involved in nitrogen metabolism in archaea, giving rise to important conclusions and new perspectives regarding the evolution, function and physiological relevance of the different N-cycle processes. This review discusses the advances that have been made in understanding nitrate reduction and other aspects of the inorganic nitrogen metabolism in archaea.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27303-0
2004-11-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503527.html?itemId=/content/journal/micro/10.1099/mic.0.27303-0&mimeType=html&fmt=ahah

References

  1. Afshar, S., Kim, C., Monbouquette, H. G. & Schröder, I. ( 1998; ). Effect of tungstate on nitrate reduction by the hyperthermophilic archaeon Pyrobaculum aerophilum. Appl Environ Microbiol 64, 3004–3008.
    [Google Scholar]
  2. Afshar, S., Johnson, E., de Vries, S. & Schröder, I. ( 2001; ). Properties of a thermostable nitrate reductase from the hyperthermophilic archaeon Pyrobaculum aerophilum. J Bacteriol 183, 5491–5495.[CrossRef]
    [Google Scholar]
  3. Álvarez-Ossorio, M. C., Muriana, F. J. G., de la Rosa, F. F. & Relimpio, A. M. ( 1992; ). Purification and characterization of nitrate reductase from the halophile archaebacterium Haloferax mediterranei. Z Naturforsch 47C, 670–676.
    [Google Scholar]
  4. Antipov, A. N., Lyalikova, N. N., Khijniak, T. V. & L'vov, N. P. ( 1998; ). Molybdenum-free nitrate reductases from vanadate-reducing bacteria. FEBS Lett 441, 257–260.[CrossRef]
    [Google Scholar]
  5. Antipov, A. N., Sorokin, D. Y., L'vov, N. P. & Kuenen, J. G. ( 2003; ). New enzyme belonging to the family of molybdenum-free nitrate reductases. Biochem J 369, 185–189.[CrossRef]
    [Google Scholar]
  6. Arcondéguy, T., Jack, R. & Merrick, M. ( 2001; ). PII signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 65, 80–105.[CrossRef]
    [Google Scholar]
  7. Belay, N., Sparling, R. & Daniels, L. ( 1984; ). Dinitrogen fixation by a thermophilic methanogenic bacterium. Nature 312, 286–288.[CrossRef]
    [Google Scholar]
  8. Bell, S. D. & Jackson, S. P. ( 2001; ). Mechanism and regulation of transcription in archaea. Curr Opin Microbiol 4, 208–213.[CrossRef]
    [Google Scholar]
  9. Berks, B. C., Ferguson, S. J., Moir, J. W. B. & Richardson, D. J. ( 1995; ). Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. Biochem Biophys Acta 1232, 97–173.
    [Google Scholar]
  10. Berks, B. C., Sargent, F. & Palmer, T. ( 2000; ). The Tat protein export pathway. Mol Microbiol 35, 260–274.[CrossRef]
    [Google Scholar]
  11. Berman-Frank, I., Lundgren, P. & Falkowski, P. ( 2003; ). Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154, 157–164.[CrossRef]
    [Google Scholar]
  12. Bertero, M. G., Rothery, R. A., Palak, M., Hou, C., Lim, D., Blasco, F., Weiner, J. H. & Strynadka, N. C. ( 2003; ). Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nat Struct Biol 10, 681–687.[CrossRef]
    [Google Scholar]
  13. Bhatnagar, L., Zeikus, J. G. & Aubert, J. P. ( 1986; ). Purification and characterization of glutamine synthetase from the archaebacterium Methanobacterium ivanovi. J Bacteriol 165, 638–643.
    [Google Scholar]
  14. Bhuiya, M. W., Sakuraba, H., Kujo, C., Nunoura-Kominato, N., Kawaraba, Y., Kikuchi, H. & Ohshima, T. ( 2000; ). Glutamate dehydrogenase from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1: enzymatic characterization, identification of the encoding gene, and phylogenetic implications. Extremophiles 4, 333–341.[CrossRef]
    [Google Scholar]
  15. Bhuiya, M. W., Sakuraba, H. & Ohshima, T. ( 2002a; ). Temperature dependence of kinetic parameters for hyperthermophilic glutamate dehydrogenase from Aeropyrum pernix K1. Biosci Biotechnol Biochem 66, 873–876.[CrossRef]
    [Google Scholar]
  16. Bhuiya, M. W., Tsuge, H., Sakuraba, H., Yoneda, K., Katunuma, N. & Ohshima, T. ( 2002b; ). Crystallization and preliminary X-ray diffraction analysis of glutamate dehydrogenase from an aerobic hyperthermophilic archaeon, Aeropyrum pernix K1. Acta Crystallogr D Biol Crystallogr 58, 1338–1339.[CrossRef]
    [Google Scholar]
  17. Bickel-Sandkötter, S. & Ufer, M. ( 1995; ). Properties of a dissimilatory nitrate reductase from the halophilic archaeon Haloferax volcanii. Z Naturforsch 50C, 365–372.
    [Google Scholar]
  18. Blakey, D., Leech, A., Thomas, G. H., Coutts, G., Findlay, K. & Merrick, M. ( 2002; ). Purification of the Escherichia coli ammonium transporter AmtB reveals a trimeric stoichiometry. Biochem J 364, 527–535.[CrossRef]
    [Google Scholar]
  19. Bonete, M. J., Camacho, M. L. & Cadenas, E. ( 1987; ). A new glutamate dehydrogenase from Halobacterium halobium with different coenzyme specificity. Int J Biochem 19, 1149–1155.[CrossRef]
    [Google Scholar]
  20. Bonete, M. J., Pérez-Pomares, F., Ferrer, J. & Camacho, M. L. ( 1996; ). NAD-glutamate dehydrogenase from Halobacterium halobium: inhibition and activation by TCA intermediates and amino acids. Biochim Biophys Acta 1289, 14–24.[CrossRef]
    [Google Scholar]
  21. Brown, J. R. & Doolittle, W. F. ( 1997; ). Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev 61, 456–502.
    [Google Scholar]
  22. Brown, J. R., Masuchi, Y., Robb, F. T. & Doolittle, W. F. ( 1994; ). Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J Mol Evol 38, 566–576.
    [Google Scholar]
  23. Brown, K., Djinovic-Carugo, K., Haltia, T., Cabrito, I., Saraste, M., Moura, J. J. G., Moura, I., Tegoni, M. & Cambillau, C. ( 2000; ). Revisiting the catalytic CuZ cluster of nitrous oxide (N2O) reductase. Evidence of a bridging inorganic sulfur. J Biol Chem 275, 41133–41136.[CrossRef]
    [Google Scholar]
  24. Buc, J., Santini, C. L., Giordani, R., Czjzek, M., Wu, L. F. & Giordano, G. ( 1999; ). Enzymatic and physiological properties of the tungsten-substituted molybdenum TMAO reductase from Escherichia coli. Mol Microbiol 32, 159–168.[CrossRef]
    [Google Scholar]
  25. Bult, C. J., White, O., Olsen, G. J. & 20 other authors ( 1996; ). Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073.[CrossRef]
    [Google Scholar]
  26. Campbell, W. H. ( 2001; ). Structure and function of eukaryotic NAD(P)H : nitrate reductase. Cell Mol Life Sci 58, 194–204.[CrossRef]
    [Google Scholar]
  27. Castillo, F., Dobao, M. M., Reyes, F., Blasco, R., Roldán, M. D., Gavira, M., Caballero, F. J., Moreno-Vivián, C. & Martínez-Luque, M. ( 1996; ). Molecular and regulatory properties of the nitrate reducing systems of Rhodobacter. Curr Microbiol 33, 341–346.[CrossRef]
    [Google Scholar]
  28. Castresana, J. & Moreira, D. ( 1999; ). Respiratory chains in the last common ancestor of living organisms. J Mol Evol 49, 453–460.[CrossRef]
    [Google Scholar]
  29. Chèneby, D., Hallet, S., Mondon, M., Martín-Laurent, F., Germon, J. C. & Philippot, L. ( 2003; ). Genetic characterization of the nitrate reducing community based on narG nucleotide sequence analysis. Microb Ecol 46, 113–121.
    [Google Scholar]
  30. Chien, Y. T. & Zinder, S. H. ( 1996; ). Cloning, functional organization, transcript studies, and phylogenetic analysis of the complete nitrogenase structural genes (nifHDK2) and associated genes in the archaeon Methanosarcina barkeri 227. J Bacteriol 178, 143–148.
    [Google Scholar]
  31. Chien, Y. T., Helmann, J. D. & Zinder, S. H. ( 1998; ). Interactions between the promoter regions of nitrogenase structural genes (nifHDK2) and DNA-binding proteins from N2- and ammonium-grown cells of the archaeon Methanosarcina barkeri 227. J Bacteriol 180, 2723–2728.
    [Google Scholar]
  32. Chien, Y. T., Auerbuch, V., Brabban, A. D. & Zinder, S. H. ( 2000; ). Analysis of genes encoding an alternative nitrogenase in the archaeon Methanosarcina barkeri 227. J Bacteriol 182, 3247–3253.[CrossRef]
    [Google Scholar]
  33. Cohen-Kupiec, R., Marx, C. J. & Leigh, J. A. ( 1999; ). Function and regulation of glnA in the methanogenic archaeon Methanococcus maripaludis. J Bacteriol 181, 256–261.
    [Google Scholar]
  34. Coutts, G., Thomas, G., Blakey, D. & Merrick, M. ( 2002; ). Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. EMBO J 21, 536–545.[CrossRef]
    [Google Scholar]
  35. Dalsgaard, T., Canfield, D. E., Petersen, J., Thamdrup, B. & Acuña-González, J. ( 2003; ). N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422, 606–608.[CrossRef]
    [Google Scholar]
  36. de Boer, W. & Kowalchuk, G. A. ( 2001; ). Nitrification in acid soils: microorganisms and mechanisms. Soil Biol Biochem 33, 853–866.[CrossRef]
    [Google Scholar]
  37. Deppenmeier, U., Lienard, T. & Gottschalk, G. ( 1999; ). Novel reactions involved in energy conservation by methanogenic archaea. FEBS Lett 457, 291–297.[CrossRef]
    [Google Scholar]
  38. Deppenmeier, U., Johann, A., Hartsch, T. & 19 other authors ( 2002; ). The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4, 453–461.
    [Google Scholar]
  39. de Vries, S. & Schröder, I. ( 2002; ). Comparison between the nitric oxide reductase family and its aerobic relatives, the cytochrome oxidases. Biochem Soc Trans 30, 662–667.
    [Google Scholar]
  40. Dias, J. M., Than, M. E., Humm, A. & 10 other authors ( 1999; ). Crystal structure of the first dissimilatory nitrate reductase at 1·9 Å solved by MAD methods. Structure 7, 65–79.[CrossRef]
    [Google Scholar]
  41. DiRuggiero, J. & Robb, F. T. ( 1995; ). Expression and in vitro assembly of recombinant glutamate dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 61, 159–164.
    [Google Scholar]
  42. DiRuggiero, J. & Robb, F. T. ( 1996; ). Enzymes of central nitrogen metabolism from hyperthermophiles: characterization, thermostability, and genetics. Adv Protein Chem 48, 311–339.
    [Google Scholar]
  43. DiRuggiero, J., Dunn, D., Maeder, D. L., Holley-Shanks, R., Chatard, J., Horlacher, R., Robb, F. T., Boos, W. & Weiss, R. B. ( 2000; ). Evidence of recent lateral gene transfer among hyperthermoplilic archaea. Mol Microbiol 38, 684–693.[CrossRef]
    [Google Scholar]
  44. Eady, R. R. ( 1996; ). Structure–function relationships of alternative nitrogenases. Chem Rev 96, 3013–3030.[CrossRef]
    [Google Scholar]
  45. Eisenberg, D., Gill, H. S., Pfluegl, G. M. U. & Rotstein, S. H. ( 2000; ). Structure–function relationships of glutamine synthetases. Biochim Biophys Acta 1477, 122–145.[CrossRef]
    [Google Scholar]
  46. Ellington, M. J. K., Richardson, D. J. & Ferguson, S. J. ( 2003; ). Rhodobacter capsulatus gains a competitive advantage from respiratory nitrate reduction during light–dark transitions. Microbiology 149, 941–948.[CrossRef]
    [Google Scholar]
  47. Fani, R., Gallo, R. & Liò, P. ( 2000; ). Molecular evolution of nitrogen fixation: the evolutionary history of the nifD, nifK, nifE, and nifN genes. J Mol Evol 51, 1–11.
    [Google Scholar]
  48. Ferguson, S. J. ( 1998; ). Nitrogen cycle enzymology. Curr Opin Chem Biol 2, 182–193.[CrossRef]
    [Google Scholar]
  49. Ferrer, J., Pérez-Pomares, F. & Bonete, M. J. ( 1996; ). NADP-glutamate dehydrogenase from the halophilic archaeon Haloferax mediterranei: enzyme purification, N-terminal sequence and stability. FEMS Microbiol Lett 141, 59–63.[CrossRef]
    [Google Scholar]
  50. Fitz-Gibbon, S. T., Ladner, H., Kim, U. J., Stetter, K. O., Simon, M. I. & Miller, J. H. ( 2002; ). Genome sequence of the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Proc Natl Acad Sci U S A 99, 984–989.[CrossRef]
    [Google Scholar]
  51. Galagan, J. E., Nusbaum, C., Roy, A. & 52 other authors ( 2002; ). The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12, 532–542.[CrossRef]
    [Google Scholar]
  52. Gates, A. J., Hughes, R. O., Sharp, S. R. & 7 other authors ( 2003; ). Properties of the periplasmic nitrate reductases from Paracoccus pantotrophus and Escherichia coli after growth in tungsten-supplemented media. FEMS Microbiol Lett 220, 261–269.[CrossRef]
    [Google Scholar]
  53. Gavira, M., Roldán, M. D., Castillo, F. & Moreno-Vivián, C. ( 2002; ). Regulation of nap gene expression and periplasmic nitrate reductase activity in the phototrophic bacterium Rhodobacter sphaeroides DSM158. J Bacteriol 184, 1693–1702.[CrossRef]
    [Google Scholar]
  54. Gomes, C. M., Giuffrè, A., Forte, E., Vicente, J., Saraiva, L., Brunori, M. & Teixeira, M. ( 2002; ). A novel type of nitric-oxide reductase: Escherichia coli flavorubredoxin. J Biol Chem 277, 25273–25276.[CrossRef]
    [Google Scholar]
  55. Gregory, L. G., Bond, P. L., Richardson, D. J. & Spiro, S. ( 2003; ). Characterization of a nitrate-respiring bacterial community using the nitrate reductase gene (narG) as a functional marker. Microbiology 149, 229–237.[CrossRef]
    [Google Scholar]
  56. Halbleib, C. M. & Ludden, P. W. ( 2000; ). Regulation of biological nitrogen fixation. J Nutr 130, 1081–1084.
    [Google Scholar]
  57. Hayden, B. M., Bonete, M. J., Brown, P. E., Moir, A. J. G. & Engel, P. C. ( 2002; ). Glutamate dehydrogenase of Halobacterium salinarum: evidence that the gene sequence currently assigned to the NADP+-dependent enzyme is in fact that of the NAD+-dependent glutamate dehydrogensase. FEMS Microbiol Lett 211, 37–41.[CrossRef]
    [Google Scholar]
  58. Helianti, I., Morita, Y., Yamamura, A., Murakami, Y., Yokoyama, K. & Tamiya, E. ( 2001; ). Characterization of native glutamate dehydrogenase from an aerobic hyperthermophilic archaeon Aeropyrum pernix K1. Appl Microbiol Biotechnol 56, 388–394.[CrossRef]
    [Google Scholar]
  59. Helianti, I., Morita, Y., Murakami, Y., Yokoyama, K. & Tamiya, E. ( 2002; ). Expression of two kinds of recombinant glutamate dehydrogenase from Aeropyrum pernix with different N-terminal sequence length in Escherichia coli. Appl Microbiol Biotechnol 59, 462–466.[CrossRef]
    [Google Scholar]
  60. Hendriks, J., Oubrie, A., Castresana, J., Urbani, A., Gemeinhardt, S. & Saraste, M. ( 2000; ). Nitric oxide reductases in bacteria. Biochim Biophys Acta 1459, 266–273.[CrossRef]
    [Google Scholar]
  61. Hille, R. ( 2002; ). Molybdenum and tungsten in biology. Trends Biochem Sci 27, 360–367.[CrossRef]
    [Google Scholar]
  62. Hochstein, L. I. & Lang, F. ( 1991; ). Purification and properties of a dissimilatory nitrate reductase from Haloferax denitrificans. Arch Biochem Biophys 288, 380–385.[CrossRef]
    [Google Scholar]
  63. Howard, J. B. & Rees, D. C. ( 1996; ). Structural basis of biological nitrogen fixation. Chem Rev 96, 2965–2982.[CrossRef]
    [Google Scholar]
  64. Ichiki, H., Tanaka, Y., Mochizuki, K., Yoshimatsu, K., Sakurai, T. & Fujiwara, T. ( 2001; ). Purification, characterization, and genetic analysis of Cu-containing dissimilatory nitrite reductase from a denitrifying halophilic archaeon, Haloarcula marismortui. J Bacteriol 183, 4149–4156.[CrossRef]
    [Google Scholar]
  65. Inatomi, K. & Hochstein, L. I. ( 1996; ). The purification and properties of a copper nitrite reductase from Haloferax denitrificans. Curr Microbiol 32, 72–76.[CrossRef]
    [Google Scholar]
  66. Javelle, A., Severi, E., Thornton, J. & Merrick, M. ( 2004; ). Ammonium sensing in Escherichia coli. Role of the ammonium transporter AmtB and AmtB-GlnK complex formation. J Biol Chem 279, 8530–8538.[CrossRef]
    [Google Scholar]
  67. Jongsareejit, B., Rahman, R. N. Z. A., Fujiwara, S. & Imanaka, T. ( 1997; ). Gene cloning, sequencing and enzymatic properties of glutamate synthase from the hyperthermophilic archaeon Pyrococcus sp. KOD1. Mol Gen Genet 254, 635–642.[CrossRef]
    [Google Scholar]
  68. Jormakka, M., Byrne, B. & Iwata, S. ( 2003; ). Protonmotive force generation by a redox loop mechanism. FEBS Lett 545, 25–30.[CrossRef]
    [Google Scholar]
  69. Jormakka, M., Richardson, D. J., Byrne, B. & Iwata, S. ( 2004; ). Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes. Structure 12, 95–104.[CrossRef]
    [Google Scholar]
  70. Kabayashi, T., Higuchi, S., Kimura, K., Kudo, T. & Horikoshi, K. ( 1995; ). Properties of glutamate dehydrogenase and its involvement in alanine production in a hyperthermophilic archaeon, Thermococcus profundus. J Biochem 118, 587–592.
    [Google Scholar]
  71. Kawarabayasi, Y., Hino, Y., Horikawa, H. & 25 other authors ( 1999; ). Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res 6, 83–101.[CrossRef]
    [Google Scholar]
  72. Kawarabayasi, Y., Hino, Y., Horikawa, H. & 27 other authors ( 2001; ). Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain7. DNA Res 8, 123–140.[CrossRef]
    [Google Scholar]
  73. Kawashima, T., Amano, N., Koike, H. & 12 other authors ( 2000; ). Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Proc Natl Acad Sci U S A 97, 14257–14262.[CrossRef]
    [Google Scholar]
  74. Kelman, L. M. & Kelman, Z. ( 2003; ). Archaea: an archetype for replication initiation studies? Mol Microbiol 48, 605–615.[CrossRef]
    [Google Scholar]
  75. Kessler, P. S. & Leigh, J. A. ( 1999; ). Genetics of nitrogen regulation in Methanococcus maripaludis. Genetics 152, 1343–1351.
    [Google Scholar]
  76. Kessler, P. S., McLarnan, J. & Leigh, J. A. ( 1997; ). Nitrogenase phylogeny and the molybdenum dependence of nitrogen fixation in Methanococcus maripaludis. J Bacteriol 179, 541–543.
    [Google Scholar]
  77. Kessler, P. S., Blank, C. & Leigh, J. A. ( 1998; ). The nif gene operon of the methanogenic archaeon Methanococcus maripaludis. J Bacteriol 180, 1504–1511.
    [Google Scholar]
  78. Kessler, P. S., Daniel, C. & Leigh, J. A. ( 2001; ). Ammonia switch-off of nitrogen fixation in the methanogenic archaeon Methanococcus maripaludis: mechanistic features and requirement for the novel GlnB homologues, NifI1 and NifI2. J Bacteriol 183, 882–889.[CrossRef]
    [Google Scholar]
  79. Klenk, H. P., Clayton, R. A., Tomb, J. F. & 48 other authors ( 1997; ). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364–370.[CrossRef]
    [Google Scholar]
  80. Kowalchuk, G. A. & Stephen, J. R. ( 2001; ). Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol 55, 485–529.[CrossRef]
    [Google Scholar]
  81. Kuypers, M. M. M., Sliekers, A. O., Lavik, G., Schmid, M., Jorgensen, B. B., Kuenen, J. G., Damsté, J. S. S., Strous, M. & Jetten, M. S. M. ( 2003; ). Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422, 608–611.[CrossRef]
    [Google Scholar]
  82. Leigh, J. A. ( 2000; ). Nitrogen fixation in methanogens: the archaeal perspective. Curr Issues Mol Biol 2, 125–131.
    [Google Scholar]
  83. Lie, T. J. & Leigh, J. A. ( 2003; ). A novel repressor of nif and glnA expression in the methanogenic archaeon Methanococcus maripaludis. Mol Microbiol 47, 235–246.
    [Google Scholar]
  84. Lobo, A. L. & Zinder, S. H. ( 1990; ). Nitrogenase in the archaebacterium Methanosarcina barkeri 227. J Bacteriol 172, 6789–6796.
    [Google Scholar]
  85. Lubben, M. & Morand, K. ( 1994; ). Novel prenylated hemes as cofactors of cytochrome oxidases. Archaea have modified hemes a and O. J Biol Chem 269, 21473–21479.
    [Google Scholar]
  86. Ludden, P. W. ( 1994; ). Reversible ADP-ribosylation as a mechanism of enzyme regulation in procaryotes. Mol Cell Biochem 138, 123–129.[CrossRef]
    [Google Scholar]
  87. Maeder, D. L., Weiss, R. B., Dunn, D. M., Cherry, J. L., González, J. M., DiRuggiero, J. & Robb, F. T. ( 1999; ). Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences. Genetics 152, 1299–1305.
    [Google Scholar]
  88. Martínez-Espinosa, R. M., Marhuenda-Egea, F. C. & Bonete, M. J. ( 2001a; ). Purification and characterization of a possible assimilatory nitrite reductase from the halophile archaeon Haloferax mediterranei. FEMS Microbiol Lett 196, 113–118.[CrossRef]
    [Google Scholar]
  89. Martínez-Espinosa, R. M., Marhuenda-Egea, F. C. & Bonete, M. J. ( 2001b; ). Assimilatory nitrate reductase from the haloarchaeon Haloferax mediterranei: purification and characterization. FEMS Microbiol Lett 204, 381–385.[CrossRef]
    [Google Scholar]
  90. Martínez-Espinosa, R. M., Marhuenda-Egea, F. C., Donaire, A. & Bonete, M. J. ( 2003; ). NMR studies of a ferredoxin from Haloferax mediterranei and its physiological role in nitrate assimilatory pathway. Biochim Biophys Acta 1623, 47–51.[CrossRef]
    [Google Scholar]
  91. Mehta, M. P., Butterfield, D. A. & Baross, J. A. ( 2003; ). Phylogenetic diversity of nitrogenase (nifH) genes in deep-sea and hydrothermal vent environments of the Juan de Fuca Ridge. Appl Environ Microbiol 69, 960–970.[CrossRef]
    [Google Scholar]
  92. Merrick, M. J. & Edwards, R. A. ( 1995; ). Nitrogen control in bacteria. Microbiol Rev 59, 604–622.
    [Google Scholar]
  93. Moir, J. W. B. & Wood, N. J. ( 2001; ). Nitrate and nitrite transport in bacteria. Cell Mol Life Sci 58, 215–224.[CrossRef]
    [Google Scholar]
  94. Moreno-Vivián, C. & Ferguson, S. J. ( 1998; ). Definition and distinction between assimilatory, dissimilatory and respiratory pathways. Mol Microbiol 29, 664–666.[CrossRef]
    [Google Scholar]
  95. Moreno-Vivián, C., Schmehl, M., Masepohl, B., Arnold, W. & Klipp, W. ( 1989; ). DNA sequence and genetic analysis of the Rhodobacter capsulatus nifENX gene region: homology between NifX and NifB suggests involvement of NifX in processing of the iron-molybdenum cofactor. Mol Gen Genet 216, 353–363.[CrossRef]
    [Google Scholar]
  96. Moreno-Vivián, C., Cabello, P., Martínez-Luque, M., Blasco, R. & Castillo, F. ( 1999; ). Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 181, 6573–6584.
    [Google Scholar]
  97. Murillo, M. F., Gugliuzza, T., Senko, J., Basu, P. & Stolz, J. F. ( 1999; ). A heme c-containing enzyme complex that exhibits nitrate and nitrite reductase activity from the dissimilatory iron-reducing bacterium Geobacter metallireducens. Arch Microbiol 172, 313–320.[CrossRef]
    [Google Scholar]
  98. Murray, P. A. & Zinder, S. H. ( 1984; ). Nitrogen fixation by a methanogenic archaebacterium. Nature 312, 284–286.[CrossRef]
    [Google Scholar]
  99. Nakahara, K., Tanimoto, T., Hatano, K., Usuda, K. & Shoun, H. ( 1993; ). Cytochrome P-450 55A1 (P-450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor. J Biol Chem 268, 8350–8355.
    [Google Scholar]
  100. Ng, W. V., Kennedy, S. P., Mahairas, G. G. & 40 other authors ( 2000; ). Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci U S A 97, 12176–12181.[CrossRef]
    [Google Scholar]
  101. Ninfa, A. J. & Atkinson, M. R. ( 2000; ). PII signal transduction proteins. Trends Microbiol 8, 172–179.[CrossRef]
    [Google Scholar]
  102. Pesole, G., Gissi, C., Lanave, C. & Saccone, C. ( 1995; ). Glutamine synthetase gene evolution in bacteria. Mol Biol Evol 12, 189–197.
    [Google Scholar]
  103. Petri, R. & Imhoff, J. F. ( 2000; ). The relationship of nitrate reducing bacteria on the basis of narH gene sequences and comparison of narH and 16S rDNA based phylogeny. Syst Appl Microbiol 23, 47–57.[CrossRef]
    [Google Scholar]
  104. Philippot, L. ( 2002; ). Denitrifying genes in bacterial and archaeal genomes. Biochim Biophys Acta 1577, 355–376.[CrossRef]
    [Google Scholar]
  105. Potter, L., Angove, H., Richardson, D. J. & Cole, J. A. ( 2001; ). Nitrate reduction in the periplasm of Gram-negative bacteria. Adv Microb Physiol 45, 51–112.
    [Google Scholar]
  106. Rahman, R. N. Z. A., Jongsareejit, B., Fujiwara, S. & Imanaka, T. ( 1997; ). Characterization of recombinant glutamine synthetase from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1. Appl Environ Microbiol 63, 2472–2476.
    [Google Scholar]
  107. Ramírez, S., Moreno, R., Zafra, O., Castán, P., Vallés, C. & Berenguer, J. ( 2000; ). Two nitrate/nitrite transporters are encoded within the mobilizable plasmid for nitrate respiration of Thermus thermophilus HB8. J Bacteriol 182, 2179–2183.[CrossRef]
    [Google Scholar]
  108. Ramírez-Arcos, S., Fernández-Herrero, L. A. & Berenguer, J. ( 1998a; ). A thermophilic nitrate reductase is responsible for the strain specific anaerobic growth of Thermus thermophilus HB8. Biochim Biophys Acta 1396, 215–227.[CrossRef]
    [Google Scholar]
  109. Ramírez-Arcos, S., Fernández-Herrero, L. A., Marín, I. & Berenguer, J. ( 1998b; ). Anaerobic growth, a property horizontally transferred by an Hfr-like mechanism among extreme thermophiles. J Bacteriol 180, 3137–3143.
    [Google Scholar]
  110. Rasmussen, T., Berks, B. C., Sanders-Loehr, J., Dooley, D. M., Zumft, W. G. & Thomson, A. J. ( 2000; ). The catalytic center in nitrous oxide reductase, CuZ, is a copper-sulfide cluster. Biochemistry 39, 12753–12756.[CrossRef]
    [Google Scholar]
  111. Rees, D. C. ( 2002; ). Great metalloclusters in enzymology. Annu Rev Biochem 71, 221–246.[CrossRef]
    [Google Scholar]
  112. Reeve, J. N. ( 2003; ). Archaeal chromatin and transcription. Mol Microbiol 48, 587–598.[CrossRef]
    [Google Scholar]
  113. Reyes, F., Roldán, M. D., Klipp, W., Castillo, F. & Moreno-Vivián, C. ( 1996; ). Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: structural and functional differences among prokaryotic nitrate reductases. Mol Microbiol 19, 1307–1318.[CrossRef]
    [Google Scholar]
  114. Reyes, F., Gavira, M., Castillo, F. & Moreno-Vivián, C. ( 1998; ). Periplasmic nitrate-reducing system of the phototrophic bacterium Rhodobacter sphaeroides DSM 158: transcriptional and mutational analysis of the napKEFDABC gene cluster. Biochem J 331, 897–904.
    [Google Scholar]
  115. Richardson, D. J. ( 2000; ). Bacterial respiration: a flexible process for a changing environment. Microbiology 146, 551–571.
    [Google Scholar]
  116. Richardson, D. J. & Watmough, N. J. ( 1999; ). Inorganic nitrogen metabolism in bacteria. Curr Opin Chem Biol 3, 207–219.[CrossRef]
    [Google Scholar]
  117. Richardson, D. J., Berks, B. C., Russell, D. A., Spiro, S. & Taylor, C. J. ( 2001; ). Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci 58, 165–178.[CrossRef]
    [Google Scholar]
  118. Ruepp, A., Graml, W., Santos-Martínez, M. L. & 7 other authors ( 2000; ). The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407, 508–513.[CrossRef]
    [Google Scholar]
  119. Sapra, R., Bagramyan, K. & Adams, M. W. W. ( 2003; ). A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci U S A 100, 7545–7550.[CrossRef]
    [Google Scholar]
  120. Saraste, M. ( 1994; ). Structure and evolution of cytochrome oxidase. Antonie Van Leeuwenhoek 65, 285–287.[CrossRef]
    [Google Scholar]
  121. Saraste, M. & Castresana, J. ( 1994; ). Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS Lett 341, 1–4.[CrossRef]
    [Google Scholar]
  122. Scharf, B. & Engelhard, M. ( 1993; ). Halocyanin, an archaebacterial blue copper protein (type I) from Natronobacterium pharaonis. Biochemistry 32, 12894–12900.[CrossRef]
    [Google Scholar]
  123. Schütz, M., Brugna, M., Lebrun, E. & 9 other authors ( 2000; ). Early evolution of cytochrome bc complexes. J Mol Biol 300, 663–675.[CrossRef]
    [Google Scholar]
  124. She, Q., Singh, R. K., Confalonieri, F. & 28 other authors ( 2001; ). The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc Natl Acad Sci U S A 98, 7835–7840.[CrossRef]
    [Google Scholar]
  125. Shoun, H. & Tanimoto, T. ( 1991; ). Denitrification by the fungus Fusarium oxysporum and involvement of cytochrome P-450 in the respiratory nitrite reduction. J Biochem 266, 11078–11082.
    [Google Scholar]
  126. Slesarev, A. I., Mezhevaya, K. V., Makarova, K. S. & 13 other authors ( 2002; ). The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc Natl Acad Sci U S A 99, 4644–4649.[CrossRef]
    [Google Scholar]
  127. Smith, E. L., Austen, B. M., Blumenthal, K. M. & Nyc, J. F. ( 1975; ). Glutamate dehydrogenases. In The Enzymes, vol. XI, pp. 293–367. Edited by P. D. Boyer. New York: Academic Press.
  128. Smith, D. R., Doucette-Stamm, L. A., Deloughery, C. & 34 other authors ( 1997; ). Complete genome sequence of Methanobacterium thermoautotrophicum ΔH: functional analysis and comparative genomics. J Bacteriol 179, 7135–7155.
    [Google Scholar]
  129. Soupene, E., Lee, H. & Kustu, S. ( 2002; ). Ammonium/methylammonium transport (Amt) proteins facilitate diffusion of NH3 bidirectionally. Proc Natl Acad Sci U S A 99, 3926–3931.[CrossRef]
    [Google Scholar]
  130. Stolz, J. F. & Basu, P. ( 2002; ). Evolution of nitrate reductase: molecular and structural variations on a common function. Chembiochem 3, 198–206.[CrossRef]
    [Google Scholar]
  131. Studholme, D. J. & Pau, R. N. ( 2003; ). A DNA element recognized by the molybdenum-responsive transcription factor ModE is conserved in Proteobacteria, green sulphur bacteria and Archaea. BMC Microbiology 3, 24–33.[CrossRef]
    [Google Scholar]
  132. Syntichaki, K. M., Loulakakis, K. A. & Roubelakis-Angelakis, K. A. ( 1996; ). The amino-acid sequence similarity of plant glutamate dehydrogenase to the extremophilic archaeal enzyme conforms to its stress-related function. Gene 168, 87–92.[CrossRef]
    [Google Scholar]
  133. Thomas, G., Coutts, G. & Merrick, M. ( 2000; ). The glnKamtB operon: a conserved gene pair in prokaryotes. Trends Genet 16, 11–14.
    [Google Scholar]
  134. Tiboni, O., Cammarano, P. & Sanangelantoni, A. M. ( 1993; ). Cloning and sequencing of the gene encoding glutamine synthetase I from the archaeum Pyrococcus woesei: anomalous phylogenies inferred from analysis of archaeal and bacterial glutamine synthetase I sequences. J Bacteriol 175, 2961–2969.
    [Google Scholar]
  135. Tomlinson, G. A., Jahnke, L. L. & Hochstein, L. I. ( 1986; ). Halobacterium denitrificans sp. nov., an extremely halophilic denitrifying bacterium. Int J Syst Bacteriol 36, 66–70.[CrossRef]
    [Google Scholar]
  136. Trotta, P. P., Platzer, K. E. B., Haschemeyer, R. H. & Meister, A. ( 1974; ). Glutamine-binding subunit of glutamate synthase and partial reactions catalyzed by this glutamine amidotransferase. Proc Natl Acad Sci U S A 71, 4607–4611.[CrossRef]
    [Google Scholar]
  137. Völkl, P., Huber, R., Drobner, E., Rachel, R., Burggraf, S., Tricone, A. & Stetter, K. O. ( 1993; ). Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59, 2918–2926.
    [Google Scholar]
  138. Vorholt, J. A., Hafenbradl, D., Stetter, K. O. & Thauer, R. K. ( 1997; ). Pathways of autotrophic CO2 fixation and of dissimilatory nitrate reduction to N2O in Ferroglobus placidus. Arch Microbiol 167, 19–23.[CrossRef]
    [Google Scholar]
  139. Wang, S., Feng, Y., Zhang, Z., Zheng, B., Li, N., Cao, S., Matsui, I. & Kosugi, Y. ( 2003; ). Heat effect on the structure and activity of the recombinant glutamate dehydrogenase from a hyperthermophilic archaeon Pyrococcus horikoshii. Arch Biochem Biophys 411, 56–62.[CrossRef]
    [Google Scholar]
  140. Wanner, C. & Soppa, J. ( 1999; ). Genetic identification of three ABC transporters as essential elements for nitrate respiration in Haloferax volcanii. Genetics 152, 1417–1428.
    [Google Scholar]
  141. Werber, M. M. & Mevarech, M. ( 1978; ). Induction of a dissimilatory reduction pathway of nitrate in Halobacterium of the Dead Sea. A possible role for the 2Fe-ferredoxin isolated from this organism. Arch Biochem Biophys 186, 60–65.[CrossRef]
    [Google Scholar]
  142. Williams, R. J. P. & Fraústo da Silva, J. J. R. ( 2002; ). The involvement of molybdenum in life. Biochem Biophys Res Comm 292, 293–299.[CrossRef]
    [Google Scholar]
  143. Woese, C. R., Kandler, O. & Wheelis, M. L. ( 1990; ). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87, 4576–4579.[CrossRef]
    [Google Scholar]
  144. Wood, N. J., Alizadeh, T., Bennet, S., Pearce, J., Ferguson, S. J., Richardson, D. J. & Moir, J. W. ( 2001; ). Maximal expression of membrane-bound nitrate reductase in Paracoccus is induced by nitrate via a third FNR-like regulator named NarR. J Bacteriol 183, 3606–3613.[CrossRef]
    [Google Scholar]
  145. Wood, N. J., Alizadeh, T., Richardson, D. J., Ferguson, S. J. & Moir, J. W. ( 2002; ). Two domains of a dual-function NarK protein are required for nitrate uptake, the first step of denitrification in Paracoccus pantotrophus. Mol Microbiol 44, 157–170.[CrossRef]
    [Google Scholar]
  146. Yin, Z., Purschke, W. G., Schafer, G. & Schmidt, C. L. ( 1998; ). The glutamine synthetase from the hyperthermoacidophilic crenarchaeon Sulfolobus acidocaldarius: isolation, characterization and sequencing of the gene. Biol Chem 379, 1349–1354.
    [Google Scholar]
  147. Yip, K. S., Stillman, T. J., Britton, K. L. & 7 other authors ( 1995; ). The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for iron-pair networks in maintaining enzyme stability at extreme temperatures. Structure 3, 1147–1158.[CrossRef]
    [Google Scholar]
  148. Yoshimatsu, K., Sakurai, T. & Fujiwara, T. ( 2000; ). Purification and characterization of dissimilatory nitrate reductase from a denitrifying halophilic archaeon, Haloarcula marismortui. FEBS Lett 470, 216–220.[CrossRef]
    [Google Scholar]
  149. Yoshimatsu, K., Iwasaki, Y. & Fujiwara, T. ( 2002; ). Sequence and electron paramagnetic resonance analysis of nitrate reductase NarGH from a denitrifying halophilic euryarchaeote Haloarcula marismortui. FEBS Lett 516, 145–150.[CrossRef]
    [Google Scholar]
  150. Zumft, W. G. ( 1997; ). Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61, 533–616.
    [Google Scholar]
  151. Zumft, W. G. & Castillo, F. ( 1978; ). Regulatory properties of the nitrogenase from Rhodopseudomonas palustris. Arch Microbiol 117, 53–60.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27303-0
Loading
/content/journal/micro/10.1099/mic.0.27303-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error