1887

Abstract

The function of the PrpR protein of serovar Typhimurium LT2 was studied and . The PrpR protein is a sensor of 2-methylcitrate (2-MC), an intermediate of the 2-methylcitric acid cycle used by this bacterium to convert propionate to pyruvate. PrpR was unresponsive to citrate (a close structural analogue of 2-MC) and to propionate, suggesting that 2-MC, not propionate, is the metabolite that signals the presence of propionate in the environment to . alleles encoding mutant proteins with various levels of 2-MC-independent activity were isolated. All lesions causing constitutive PrpR activity were mapped to the N-terminal domain of the protein. Removal of the entire sensing domain resulted in a protein (PrpR) with the highest 2-MC-independent activity. Residue A162 is critical to 2-MC sensing, since the mutant PrpR protein PrpR was as active as the PrpR protein in the absence of 2-MC. DNA footprinting studies identified the site in the region between and the operon to which the PrpR protein binds. Analysis of the binding-site sequence revealed two sites with dyad symmetry. Results from DNase I footprinting assays suggested that the PrpR protein may have higher affinity for the site proximal to the P promoter.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27299-0
2004-11-01
2020-07-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503877.html?itemId=/content/journal/micro/10.1099/mic.0.27299-0&mimeType=html&fmt=ahah

References

  1. Austin S., Dixon R. 1992; The prokaryotic enhancer binding protein NTRC has an ATPase activity which is phosphorylation and DNA dependent. EMBO J11:2219–2228
    [Google Scholar]
  2. Ausubel F. A., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1989; Current Protocols in Molecular Biology New York, NY: Greene Publishing Associates & Wiley Interscience;
    [Google Scholar]
  3. Bargo F., Muller L. D., Varga G. A., Delahoy J. E., Cassidy T. W. 2002; Ruminal digestion and fermentation of high-producing dairy cows with three different feeding systems combining pasture and total mixed rations. J Dairy Sci85:2964–2973[CrossRef]
    [Google Scholar]
  4. Barnes E. M., Impey C. S., Stevens B. J. 1979; Factors affecting the incidence and anti-salmonella activity of the anaerobic caecal flora of the young chick. J Hyg (Lond)82:263–283[CrossRef]
    [Google Scholar]
  5. Berger S. L. 1984; The use of Cerenkov radiation for monitoring reactions performed in minute volumes: examples from recombinant DNA technology. Anal Biochem136:515–519[CrossRef]
    [Google Scholar]
  6. Berkowitz D., Hushon J. M., Whitfield H. J., Roth J., Ames B. N. 1968; Procedure for identifying nonsense mutations. J Bacteriol96:215–220
    [Google Scholar]
  7. Brock M., Fischer R., Linder D., Buckel W. 2000; Methylcitrate synthase from Aspergillus nidulans: implications for propionate as an antifungal agent. Mol Microbiol35:961–973[CrossRef]
    [Google Scholar]
  8. Bryant M. 1997; Introduction to gastrointestinal microbial ecology. In Gastrointestinal Microbiology pp3–10 Edited by Mackie R., White B., Isaacson R.. New York: Chapman and Hall;
    [Google Scholar]
  9. Buckel W. 1999; Anaerobic energy metabolism. In Biology of the Procaryotes pp278–326 Edited by Lengler J. W., Drews G., Chlegel H. G.. Stuttgart, Germany: Thieme;
    [Google Scholar]
  10. Busch M., Stein G., Poppitz W., Hein G., Muller A. 2002; Validated capillary gas chromatographic-mass spectrometric assay to determine 2-methylcitric acid I and II levels in human serum by using a pulsed splitless injection procedure. J Chromatogr B Analyt Technol Biomed Life Sci775:215–223[CrossRef]
    [Google Scholar]
  11. Byrne B. M., Dankert J. 1979; Volatile fatty acids and aerobic flora in the gastrointestinal tract of mice under various conditions. Infect Immun23:559–563
    [Google Scholar]
  12. Castilho B. A., Olfson P., Casadaban M. J. 1984; Plasmid insertion mutagenesis and lac gene fusions with mini-Mu bacteriophage transposons. J Bacteriol158:488–495
    [Google Scholar]
  13. Chaney M., Buck M. 1999; The sigma 54 DNA-binding domain includes a determinant of enhancer responsiveness. Mol Microbiol33:1200–1209
    [Google Scholar]
  14. Collier L. S., Gaines G. L. 3rd, Neidle E. L. 1998; Regulation of benzoate degradation in Acinetobacter sp. strain ADP1 by BenM, a LysR-type transcriptional activator. J Bacteriol180:2493–2501
    [Google Scholar]
  15. Cummings J. H. 1995; Short chain fatty acids. In Human Colonic Bacteria: Role in Nutrition, Physiology and Pathology pp101–105 Edited by Gibson G., Macfarlane G.. London: CRC Press;
    [Google Scholar]
  16. Escalante-Semerena J. C., Roth J. R. 1987; Regulation of cobalamin biosynthetic operons in Salmonella typhimurium. J Bacteriol169:2251–2258
    [Google Scholar]
  17. Fernandez S., de Lorenzo V., Perez-Martin J. 1995; Activation of the transcriptional regulator XylR of Pseudomonas putida by release of repression between functional domains. Mol Microbiol16:205–213[CrossRef]
    [Google Scholar]
  18. Garmendia J., de Lorenzo V. 2000; The role of the interdomain B linker in the activation of the XylR protein of Pseudomonas putida. Mol Microbiol38:401–410[CrossRef]
    [Google Scholar]
  19. Horswill A. R., Escalante-Semerena J. C. 1997; Propionate catabolism in Salmonella typhimurium LT2: two divergently transcribed units comprise the prp locus at 8·5 centisomes, prpR encodes a member of the sigma-54 family of activators, and the prpBCDE genes constitute an operon. J Bacteriol179:928–940
    [Google Scholar]
  20. Horswill A. R., Escalante-Semerena J. C. 2001; In vitro conversion of propionate to pyruvate by Salmonella enterica enzymes: 2-methylcitrate dehydratase (PrpD) and aconitase enzymes catalyze the conversion of 2-methylcitrate to 2-methylisocitrate. Biochemistry40:4703–4713[CrossRef]
    [Google Scholar]
  21. Horswill A. R., Dudding A. R., Escalante-Semerena J. C. 2001; Studies of propionate toxicity in Salmonella enterica identify 2-methylcitrate as a potent inhibitor of cell growth. J Biol Chem276:19094–19101[CrossRef]
    [Google Scholar]
  22. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685[CrossRef]
    [Google Scholar]
  23. Lee J. H., Scholl D., Nixon B. T., Hoover T. R. 1994; Constitutive ATP hydrolysis and transcription activation by a stable, truncated form of Rhizobium meliloti DCTD, a sigma 54-dependent transcriptional activator. J Biol Chem269:20401–20409
    [Google Scholar]
  24. Lee S. Y., De La Torre A., Yan D., Kustu S., Nixon B. T., Wemmer D. E. 2003; Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains. Genes Dev17:2552–2563[CrossRef]
    [Google Scholar]
  25. Lupas A., Van Dyke M., Stock J. 1991; Predicting coiled coils from protein sequences. Science252:1162–1164[CrossRef]
    [Google Scholar]
  26. Man W.-J., Li Y., Connor C. D., Wilton D. C. 1995; The binding of propionyl-CoA and carboxymethyl-CoA to Escherichia coli citrate synthase. Biochim Biophys Acta1250:69–75[CrossRef]
    [Google Scholar]
  27. Maruyama K., Kitamura H. 1985; Mechanisms of growth inhibition by propionate and restoration of the growth by sodium bicarbonate or acetate in Rhodopseudomonas sphaeroides S. J Biochem (Tokyo)98:819–824
    [Google Scholar]
  28. Morett E., Segovia L. 1993; The σ54 bacterial enhancer-binding protein family: mechanism of action and phylogenetic relationship of their functional domains. J Bacteriol175:6067–6074
    [Google Scholar]
  29. O'Neill E., Ng L. C., Sze C. C., Shingler V. 1998; Aromatic ligand binding and intramolecular signalling of the phenol-responsive sigma54-dependent regulator DmpR. Mol Microbiol28:131–141
    [Google Scholar]
  30. O'Neill E., Wikstrom P., Shingler V. 2001; An active role for a structured B-linker in effector control of the sigma54-dependent regulator DmpR. EMBO J20:819–827[CrossRef]
    [Google Scholar]
  31. Palacios S., Escalante-Semerena J. C. 2000; prpR, ntrA, and ihf functions are required for expression of the prpBCDE operon, encoding enzymes that catabolize propionate in Salmonella enterica serovar typhimurium LT2. J Bacteriol182:905–910[CrossRef]
    [Google Scholar]
  32. Perez-Martin J., De Lorenzo V. 1995; The amino-terminal domain of the prokaryotic enhancer-binding protein XylR is a specific intramolecular repressor. Proc Natl Acad Sci U S A92:9392–9396[CrossRef]
    [Google Scholar]
  33. Sasse J. 1991; Detection of proteins. In Current Protocols in Molecular Biology pp.10.16.11–10.16.18 Edited by Ausubel F. A., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. New York: Wiley Interscience;
    [Google Scholar]
  34. Schneider D. A., Gaal T., Gourse R. L. 2002; NTP-sensing by rRNA promoters in Escherichia coli is direct. Proc Natl Acad Sci U S A99:8602–8607[CrossRef]
    [Google Scholar]
  35. Tang X., Nakata Y., Li H.-O., Zhang M., Gao H., Fujita A., Sakatsume O., Ohta T., Yokoyama K. 1994; The optimization of preparations of competent cells for transformation of E. coli. Nucleic Acid Res22:2857–2858[CrossRef]
    [Google Scholar]
  36. Tsai S. P., Hartin R. J., Ryu J. 1989; Transformation in restriction-deficient Salmonella typhimurium LT2. J Gen Microbiol135:2561–2567
    [Google Scholar]
  37. Tsang A. W., Horswill A. R., Escalante-Semerena J. C. 1998; Studies of regulation of expression of the propionate (prpBCDE) operon provide insights into how Salmonella typhimurium LT2 integrates its 1,2-propanediol and propionate catabolic pathways. J Bacteriol180:6511–6518
    [Google Scholar]
  38. Vale R. D. 2000; AAA proteins. Lords of the ring. J Cell Biol150:F13–19[CrossRef]
    [Google Scholar]
  39. Weiss D. S., Batut J., Klose K. E., Keener J., Kustu S. 1991; The phosphorylated form of the enhancer-binding protein NTRC has an ATPase activity that is essential for activation of transcription. Cell67:155–167[CrossRef]
    [Google Scholar]
  40. Wyman C., Rombel I., North A. K., Bustamante C., Kustu S. 1997; Unusual oligomerization required for activity of NtrC, a bacterial enhancer-binding protein. Science275:1658–1661[CrossRef]
    [Google Scholar]
  41. Xu H., Hoover T. R. 2001; Transcriptional regulation at a distance in bacteria. Curr Opin Microbiol4:138–144[CrossRef]
    [Google Scholar]
  42. Zhang X., Chaney M., Wigneshweraraj S. R., Schumacher J., Bordes P., Cannon W., Buck M. 2002; Mechanochemical ATPases and transcriptional activation. Mol Microbiol45:895–903[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27299-0
Loading
/content/journal/micro/10.1099/mic.0.27299-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error