1887

Abstract

The primary site of infection for , and is the ciliated respiratory epithelium. Previous studies have implicated adherence of bacteria to cilia, induction of mucus production, induction of ciliostasis and damage to the ciliated epithelium in pathogenesis. This paper describes the use of an air-interface organ culture system using canine tracheal tissue infected with to assess the temporal relationship between these pathologies. Ciliostasis occurs very early during the host tissue–pathogen interaction, before mucus production and obvious signs of epithelial damage occur. A mutant does not colonize the organ culture model, induce ciliostasis or cause damage to the epithelial cell layer, but it does induce similar amounts of mucus release as does infection by wild-type bacteria. The authors propose that ciliostasis is a key early event during the –host tissue interaction that abrogates the muco-ciliary defences of the host tissue, renders it susceptible to colonization by the bacteria and allows subsequent damage to the epithelium. The organ culture model described offers a physiologically relevant tool with which to characterize the molecular basis for interactions between and its primary site of infection, the ciliated respiratory epithelium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27283-0
2004-09-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/9/mic1502843.html?itemId=/content/journal/micro/10.1099/mic.0.27283-0&mimeType=html&fmt=ahah

References

  1. Amano, K., Yokota, S., Ishioka, T., Hayashi, S., Kubota, T. & Fujii, N. ( 1998; ). Utilization of proteinase K-treated cells as lipopolysaccharide antigens for the serodiagnosis of Helicobacter pylori infections. Microbiol Immunol 42, 509–514.[CrossRef]
    [Google Scholar]
  2. Bancroft, J. & Cook, H. ( 1994; ). Manual of Histological Techniques and their Diagnostic Application. Edinburgh: Churchill Livingstone.
  3. Bemis, D. A. & Kennedy, J. R. ( 1981; ). An improved system for studying the effect of Bordetella bronchiseptica on the ciliary activity of canine tracheal epithelial cells. J Infect Dis 144, 349–357.[CrossRef]
    [Google Scholar]
  4. Bemis, D. A., Greisen, H. A. & Appel, M. J. G. ( 1977; ). Pathogenesis of canine bordetellosis. J Infect Dis 135, 753–762.[CrossRef]
    [Google Scholar]
  5. Bemis, D. A. & Wilson, S. A. ( 1985; ). Influence of potential virulence determinants on Bordetella bronchiseptica-induced ciliostasis. Infect Immun 50, 35–42.
    [Google Scholar]
  6. Cherry, J. D. ( 1996; ). Historical review of pertussis and the classical vaccine. J Infect Dis 174, S259–S263.[CrossRef]
    [Google Scholar]
  7. Cotter, P. A. & Miller, J. F. ( 1994; ). BvgAS-mediated signal-transduction – analysis of phase-locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect Immun 62, 3381–3390.
    [Google Scholar]
  8. Dowling, R. B., Newton, R., Robichaud, A., Cole, P. J., Barnes, P. J. & Wilson, R. ( 1998; ). Effect of inhibition of nitric oxide synthase on Pseudomonas aeruginosa infection of respiratory mucosa in vitro. Am J Respir Cell Mol Biol 19, 950–958.[CrossRef]
    [Google Scholar]
  9. Flak, T. A. & Goldman, W. E. ( 1999; ). Signalling and cellular specificity of airway nitric oxide production in pertussis. Cell Microbiol 1, 51–60.[CrossRef]
    [Google Scholar]
  10. Flak, T. A., Heiss, L. N., Engle, J. T. & Goldman, W. E. ( 2000; ). Synergistic epithelial responses to endotoxin and a naturally occurring muramyl peptide. Infect Immun 68, 1235–1242.[CrossRef]
    [Google Scholar]
  11. Funnell, S. G. & Robinson, A. ( 1993; ). A novel adherence assay for Bordetella pertussis using tracheal organ cultures. FEMS Microbiol Lett 110, 197–203.[CrossRef]
    [Google Scholar]
  12. Goldman, W. E., Luker, K. E., Flak, T. A. & Heiss, L. N. ( 1994; ). Tracheal cytotoxin induction of nitric-oxide synthesis – role in the pathogenesis of pertussis. J Cell Biochem S18A, 40.
    [Google Scholar]
  13. Goodnow, R. A. ( 1980; ). Biology of Bordetella bronchiseptica. Microbiol Rev 44, 722–738.
    [Google Scholar]
  14. Groathouse, N. A., Heinzen, R. A. & Boitano, S. ( 2003; ). Functional BvgAS virulence control system in Bordetella bronchiseptica is necessary for induction of Ca2+ transients in ciliated tracheal epithelial cells. Infect Immun 71, 7208–7210.[CrossRef]
    [Google Scholar]
  15. Heiss, L. N., Flak, T. A., Lancaster, J. R., Jr, McDaniel, M. L. & Goldman, W. E. ( 1993; ). Nitric oxide mediates Bordetella pertussis tracheal cytotoxin damage to the respiratory epithelium. Infect Agents Dis 2, 173–177.
    [Google Scholar]
  16. Jackson, A. D., Rayner, C. F., Dewar, A., Cole, P. J. & Wilson, R. ( 1996; ). A human respiratory-tissue organ culture incorporating an air interface. Am J Respir Crit Care Med 153, 1130–1135.[CrossRef]
    [Google Scholar]
  17. Kim, K. C., Hisatsune, A., Kim do, J. & Miyata, T. ( 2003; ). Pharmacology of airway goblet cell mucin release. J Pharmacol Sci 92, 301–307.[CrossRef]
    [Google Scholar]
  18. Martinez de Tejada, G., Miller, J. F. & Cotter, P. A. ( 1996; ). Comparative analysis of the virulence control systems of Bordetella pertussis and Bordetella bronchiseptica. Mol Microbiol 22, 895–908.[CrossRef]
    [Google Scholar]
  19. Matsuyama, T. ( 1977; ). Resistance of Bordetella pertussis phase I to mucociliary clearance by rabbit tracheal mucous membrane. J Infect Dis 136, 609–616.[CrossRef]
    [Google Scholar]
  20. Middleton, A. M., Chadwick, M. V., Nicholson, A. G., Dewar, A., Feldman, C. & Wilson, R. ( 2003; ). Investigation of mycobacterial colonisation and invasion of the respiratory mucosa. Thorax 58, 246–251.[CrossRef]
    [Google Scholar]
  21. Muse, K. E., Collier, A. M. & Baseman, J. B. ( 1977; ). Scanning electron microscopic study of hamster tracheal organ cultures infected with Bordetella pertussis. J Infect Dis 136, 768–777.[CrossRef]
    [Google Scholar]
  22. Nennig, M. E., Shinefield, H. R., Edwards, K. M., Black, S. B. & Fireman, B. H. ( 1996; ). Prevalence and incidence of adult pertussis in an urban population. JAMA 275, 1672–1674.[CrossRef]
    [Google Scholar]
  23. Parkhill, J., Sebaihia, M., Preston, A. & 50 other authors ( 2003; ). Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35, 32–40.[CrossRef]
    [Google Scholar]
  24. Porter, J. F., Connor, K. & Donachie, W. ( 1996; ). Differentiation between human and ovine isolates of Bordetella parapertussis using pulsed-field gel-electrophoresis. FEMS Microbiol Lett 135, 131–135.[CrossRef]
    [Google Scholar]
  25. Preston, A., Maxim, E., Toland, E., Pishko, E. J., Harvill, E. T., Caroff, M. & Maskell, D. J. ( 2003; ). Bordetella bronchiseptica PagP is a Bvg-regulated lipid A palmitoyl transferase that is required for persistent colonization of the mouse respiratory tract. Mol Microbiol 48, 725–736.[CrossRef]
    [Google Scholar]
  26. Preston, A., Parkhill, J. & Maskell, D. J. ( 2004; ). The bordetellae: lessons from genomics. Nat Rev Microbiol 2, 379–390.[CrossRef]
    [Google Scholar]
  27. Rogers, D. F. ( 1994; ). Airway goblet cells: responsive and adaptable front-line defenders. Eur Respir J 7, 1690–1706.[CrossRef]
    [Google Scholar]
  28. Rogers, D. F. ( 2003; ). The airway goblet cell. Int J Biochem Cell Biol 35, 1–6.[CrossRef]
    [Google Scholar]
  29. Soane, M. C., Jackson, A., Maskell, D., Allen, A., Keig, P., Dewar, A., Dougan, G. & Wilson, R. ( 2000; ). Interaction of Bordetella pertussis with human respiratory mucosa in vitro. Respir Med 94, 791–799.[CrossRef]
    [Google Scholar]
  30. Thompson, H., McCandlish, I. A. P. & Wright, N. G. ( 1976; ). Experimental respiratory disease in dogs due to Bordetella bronchiseptica. Res Vet Sci 20, 16–23.
    [Google Scholar]
  31. Thornton, D. J., Holmes, D. F., Sheehan, J. K. & Carlstedt, I. ( 1989; ). Quantitation of mucus glycoproteins blotted onto nitrocellulose membranes. Anal Biochem 182, 160–164.[CrossRef]
    [Google Scholar]
  32. Wilson, R., Read, R. & Cole, P. ( 1992; ). Interaction of Haemophilus influenzae with mucus, cilia, and respiratory epithelium. J Infect Dis 165, S100–S102.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27283-0
Loading
/content/journal/micro/10.1099/mic.0.27283-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error