1887

Abstract

The heat-shock response is conserved amongst practically all organisms. Almost invariably, the massive heat-shock protein (Hsp) synthesis that it induces is subsequently down-regulated, making this a transient, not a sustained, stress response. This study investigated whether the heat-shock response displays any unusual features in the methylotrophic yeast , since this organism exhibits the highest growth temperature (49–50 °C) identified to date for any yeast and grows at 47 °C without either thermal death or detriment to final biomass yield. Maximal levels of Hsp induction were observed with a temperature upshift of from 30 °C to 47–49 °C. This heat shock induces a prolonged growth arrest, heat-shock protein synthesis being down-regulated long before growth resumes at such high temperatures. A 30 °C to 49 °C heat shock also induced thermotolerance, although cells in balanced growth at 49 °C were intrinsically thermotolerant. Unexpectedly, the normal transience of the heat-shock response was suppressed completely by imposing the additional stress of hypoxia at the time of the 30 °C to 49 °C temperature upshift. Hypoxia abolishing the transience of the heat-shock response appears to operate at the level of Hsp gene transcription, since the heat-induced Hsp70 mRNA was transiently induced in a heat-shocked normoxic culture but displayed sustained induction in a culture deprived of oxygen at the time of temperature upshift.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27272-0
2005-03-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/3/mic1510805.html?itemId=/content/journal/micro/10.1099/mic.0.27272-0&mimeType=html&fmt=ahah

References

  1. Abravaya, K., Myers, M. P., Murphy, S. P. & Morimoto, R. I. ( 1992; ). The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes Dev 6, 1153–1164.[CrossRef]
    [Google Scholar]
  2. Ades, S. E. L. E. C., Alba, B. M. & Gross, C. A. ( 1999; ). The Escherichia coli sigma(E)-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-sigma factor. Genes Dev 13, 2449–2461.[CrossRef]
    [Google Scholar]
  3. Ahn, S. G. & Thiele, D. J. ( 2003; ). Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes Dev 17, 516–528.[CrossRef]
    [Google Scholar]
  4. Ananthan, J., Goldberg, A. L. & Voellmy, R. ( 1986; ). Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232, 522–525.[CrossRef]
    [Google Scholar]
  5. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1995; ). Short Protocols in Molecular Biology, 3rd edn. New York: Wiley.
  6. Bonner, J. J., Carlson, T., Fackenthal, D. L., Paddock, D., Storey, K. & Lea, K. ( 2000; ). Complex regulation of the yeast heat shock transcription factor. Mol Biol Cell 11, 1739–1751.[CrossRef]
    [Google Scholar]
  7. Cabeca-Silva, C. & Madiera-Lopes, A. ( 1984; ). Temperature relations of yield, growth and thermal death in the yeast Hansenula polymorpha. Z Allg Mikrobiol 24, 129–132.[CrossRef]
    [Google Scholar]
  8. Chatterjee, M. T., Khalawan, S. A. & Curran, B. P. ( 1997; ). Alterations in cellular lipids may be responsible for the transient nature of the yeast heat shock response. Microbiology 143, 3063–3068.[CrossRef]
    [Google Scholar]
  9. Chen, Y., Barlev, N. A., Westergaard, O. & Jakobsen, B. K. ( 1993; ). Identification of the C-terminal activator domain in yeast heat shock factor: independent control of transient and sustained transcriptional activity. EMBO J 12, 5007–5018.
    [Google Scholar]
  10. Cheng, L. & Piper, P. W. ( 1994; ). Weak acid preservatives block the heat shock response and heat-shock-element-directed lacZ expression of low pH Saccharomyces cerevisiae cultures, an inhibitory action partially relieved by respiratory deficiency. Microbiology 140, 1085–1096.[CrossRef]
    [Google Scholar]
  11. Craig, E. A. & Gross, C. A. ( 1991; ). Is hsp70 the cellular thermometer? Trends Biochem Sci 16, 135–140.[CrossRef]
    [Google Scholar]
  12. Craig, E. A. & Jacobsen, K. ( 1984; ). Mutations in the heat shock-inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell 38, 841–849.[CrossRef]
    [Google Scholar]
  13. Duina, A. A., Kalton, H. M. & Gaber, R. F. ( 1998; ). Requirement for Hsp90 and a Cyp40-type cyclophilin in negative regulation of the heat shock response. J Biol Chem 273, 18974–18978.[CrossRef]
    [Google Scholar]
  14. Ellis, R. J. & van der Vries, S. M. ( 1991; ). Molecular chaperones. Annu Rev Biochem 60, 321–347.[CrossRef]
    [Google Scholar]
  15. Gellissen, G. ( 2000; ). Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol 54, 741–750.[CrossRef]
    [Google Scholar]
  16. Gething, M. J. & Sambrook, J. ( 1992; ). Protein folding in the cell. Nature 355, 33–45.[CrossRef]
    [Google Scholar]
  17. Grant, C. M., Firoozan, M. & Tuite, M. F. ( 1989; ). Mistranslation induces the heat shock response in the yeast Saccharomyces cerevisiae. Mol Microbiol 3, 215–220.[CrossRef]
    [Google Scholar]
  18. Hahn, J. S., Hu, Z., Thiele, D. J. & Iyer, V. R. ( 2004; ). Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24, 5249–5256.[CrossRef]
    [Google Scholar]
  19. Harris, N., MacLean, M., Hatzianthis, K., Panaretou, B. & Piper, P. W. ( 2001; ). Increasing the stress resistance of Saccharomyces cerevisiae, by the overactivation of the heat shock response that results from Hsp90 defects, does not extend replicative life span but can be associated with a slower chronological ageing of nondividing cells. Mol Gen Genomics 265, 258–263.[CrossRef]
    [Google Scholar]
  20. Hollenberg, C. P. & Gellissen, G. ( 1997; ). Production of recombinant proteins by methylotrophic yeasts. Curr Opin Biotechnol 8, 554–560.[CrossRef]
    [Google Scholar]
  21. Kirk, N. & Piper, P. W. ( 1991; ). The determinants of heat shock element-directed lacZ expression in Saccharomyces cerevisiae. Yeast 7, 539–546.[CrossRef]
    [Google Scholar]
  22. Lee, D. H. & Goldberg, A. L. ( 1998; ). Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer thermotolerance in Saccharomyces cerevisiae. Mol Cell Biol 18, 30–38.
    [Google Scholar]
  23. Lee, S., Carlson, T., Christian, N., Lea, K., Kedzie, J., Reilly, J. P. & Bonner, J. J. ( 2000; ). The yeast heat shock transcription factor changes conformation in response to superoxide and temperature. Mol Biol Cell 11, 1753–1764.[CrossRef]
    [Google Scholar]
  24. Lindquist, S. & Kim, G. ( 1996; ). Heat shock protein 104 expression is sufficient for thermotolerance in yeast. Proc Natl Acad Sci U S A 93, 5301–5306.[CrossRef]
    [Google Scholar]
  25. Maheshwari, R., Bharadwaj, G. & Bhat, M. K. ( 2000; ). Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64, 461–488.[CrossRef]
    [Google Scholar]
  26. McDaniel, D., Caplan, A. J., Lee, M.-S., Adams, C. C., Fishel, B. R., Gross, D. S. & Garrard, W. T. ( 1989; ). Basal level expression of the yeast hsp82 gene requires a heat shock regulatory element. Mol Cell Biol 9, 4789–4798.
    [Google Scholar]
  27. Morimoto, R. I., Kline, M. P., Bimston, D. N. & Cotto, J. J. ( 1997; ). The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem 32, 17–29.
    [Google Scholar]
  28. Panaretou, B. & Piper, P. W. ( 1990; ). Plasma membrane ATPase action affects several stress tolerances of Saccharomyces cerevisiae and Schizosaccharomyces pombe as well as the extent and duration of the heat shock response. J Gen Microbiol 136, 1763–1770.[CrossRef]
    [Google Scholar]
  29. Panaretou, B. & Piper, P. W. ( 1992; ). The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase. Eur J Biochem 206, 635–640.[CrossRef]
    [Google Scholar]
  30. Parsell, D. A. & Lindquist, S. ( 1993; ). The function of heat shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27, 437–496.[CrossRef]
    [Google Scholar]
  31. Parsell, D. A. & Sauer, R. T. ( 1989; ). Induction of a heat shock-like response by unfolded protein in E. coli: dependence on protein level not protein degradation. Genes Dev 3, 1226–1232.[CrossRef]
    [Google Scholar]
  32. Piper, P. W. ( 1993; ). Molecular events associated with the acquisition of heat tolerance in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 11, 1–11.[CrossRef]
    [Google Scholar]
  33. Piper, P., Mahé, Y., Thompson, S., Pandjaitan, R., Holyoak, C., Egner, R., Mühlbauer, M., Coote, P. & Kuchler, K. ( 1998; ). The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17, 4257–4265.[CrossRef]
    [Google Scholar]
  34. Piper, P. W., Talreja, K., Panaretou, B., Moradas-Ferreira, P., Byrne, K., Praekelt, U. M., Meacock, P., Recnacq, M. & Boucherie, H. ( 1994; ). Induction of major heat-shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold. Microbiology 140, 3031–3038.[CrossRef]
    [Google Scholar]
  35. Reinders, A., Romano, I., Wiemken, A. & de Virgilio, C. ( 1999; ). The thermophilic yeast Hansenula polymorpha does not require trehalose synthesis for growth at high temperature but does for normal acquisition of thermotolerance. J Bacteriol 181, 4665–4668.
    [Google Scholar]
  36. Rowley, A., Johnston, G. C., Butler, B., Werner-Washburne, M. & Singer, R. A. ( 1993; ). Heat shock-mediated cell cycle blockage and G1 cyclin expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 13, 1034–1041.
    [Google Scholar]
  37. Sechbach, J. ( 1994; ). Evolutionary pathways and enigmatic algae: Cyanidarium caldarium (Rhodophyta) and related cells. Dev Hydrobiol 91, 349–366.
    [Google Scholar]
  38. Shi, Y., Mosser, D. D. & Morimoto, R. I. ( 1998; ). Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev 12, 654–666.[CrossRef]
    [Google Scholar]
  39. Sorger, P. K. ( 1991; ). Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62, 793–805.
    [Google Scholar]
  40. Sudbery, P. E. ( 1996; ). The expression of recombinant proteins in yeasts. Curr Opin Biotechnol 7, 517–524.[CrossRef]
    [Google Scholar]
  41. Titorenko, V. I., Evers, M. E., Diesel, A., Samyn, B., van Beeumen, J., Roggenkamp, R., Kiel, J. A. K. W., van der Klei, I. J. & Veenhuis, M. ( 1996; ). Identification and characterisation of cytosolic Hansenula polymorpha proteins belonging to the Hsp70 family. Yeast 12, 849–857.[CrossRef]
    [Google Scholar]
  42. Trotter, E. W., Berenfeld, L., Krause, S. A., Petsko, G. A. & Gray, J. V. ( 2001; ). Protein misfolding and temperature upshift cause G1 arrest via a common mechanism dependent on heat shock factor in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 98, 7313–7318.[CrossRef]
    [Google Scholar]
  43. Tsiomenko, A. B., Plekhanov, P. G., Tuymetova, G. P. & Kononova, S. V. ( 1997; ). Secretory heat-shock protein of the thermotolerant yeast Hansenula polymorpha. Identification and comparative characteristics. Biochemistry (Mosc) 62, 123–128.
    [Google Scholar]
  44. van Dijk, R., Faber, K. N., Kiel, J. A., Veenhuis, M. & van der Klei, I. ( 2000; ). The methylotrophic yeast Hansenula polymorpha: a versatile cell factory. Enzyme Microb Technol 26, 793–800.[CrossRef]
    [Google Scholar]
  45. van Uden, N. ( 1984; ). Temperature profiles of yeasts. Adv Microb Physiol 25, 195–248.
    [Google Scholar]
  46. Vigh, L., Maresca, B. & Harwood, J. L. ( 1998; ). Does the membrane's physical state control the expression of heat shock and other genes? Trends Biochem Sci 23, 369–374.[CrossRef]
    [Google Scholar]
  47. Welch, W. J. ( 1991; ). The role of heat shock proteins as molecular chaperones. Curr Opin Cell Biol 3, 1033–1038.[CrossRef]
    [Google Scholar]
  48. Zhong, M., Orosz, A. & Wu, C. ( 1998; ). Direct sensing of heat and oxidation by Drosophila heat shock transcription factor. Mol Cell 2, 101–108.[CrossRef]
    [Google Scholar]
  49. Zou, J., Salminen, W. F., Roberts, S. M. & Voellmy, R. ( 1998a; ). Correlation between glutathione oxidation and trimerisation of heat shock factor 1, an early step in stress induction of the Hsp response. Cell Stress Chaperones 3, 130–141.[CrossRef]
    [Google Scholar]
  50. Zou, J., Guo, Y., Guettouche, T., Smith, D. F. & Voellmy, R. ( 1998b; ). Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94, 471–480.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27272-0
Loading
/content/journal/micro/10.1099/mic.0.27272-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error