The global regulator MvaT specifically binds to the upstream region and enhances expression Free

Abstract

Exotoxin A production in is regulated positively or negatively by several genes. Two such regulatory genes, and , which are divergently transcribed from each other, have been described previously. While computer analysis suggested that the - intergenic region contains potential binding sites for several regulatory proteins, the mechanism that regulates the expression of either or in is not known. The presence of a protein complex that specifically binds to a segment within this region was determined. In this study the binding region was localized to a 150 bp fragment of the intergenic region and the proteins that constitute the binding complex were characterized as HU and MvaT. Recombinant MvaT was purified as a fusion protein (MAL-MvaT) and shown to specifically bind to the - intergenic region. A PAO1 isogenic mutant defective in , PAOΔ, was constructed and characterized. The lysate of PAOΔ failed to bind to the 150 bp probe. The effect of on and expression was examined using real-time PCR experiments. The expression of was lower in PAOΔ than in PAO1, but no difference was detected in expression. These results suggest that MvaT positively regulates expression by binding specifically to the upstream region.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27270-0
2004-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503797.html?itemId=/content/journal/micro/10.1099/mic.0.27270-0&mimeType=html&fmt=ahah

References

  1. Aki T., Adhya S. 1997; Repressor induced site-specific binding of HU for transcriptional regulation. EMBO J 16:3666–3674 [CrossRef]
    [Google Scholar]
  2. Aki T., Choy H. E., Adhya S. 1996; Histone-like protein HU as a specific transcriptional regulator: co-factor role in repression of gal transcription by GAL repressor. Genes Cells 1:179–188 [CrossRef]
    [Google Scholar]
  3. Albus A. M., Pesci E. C., Runyen-Janecky L. J., West S. E., Iglewski B. H. 1997; Vfr controls quorum sensing in Pseudomonas aeruginosa . J Bacteriol 179:3928–3935
    [Google Scholar]
  4. Atlung T., Ingmer H. A. 1997; H-NS: a modulator of environmentally regulated gene expression. Mol Microbiol 24:7–17 [CrossRef]
    [Google Scholar]
  5. Ausubel F., Brent R., Kingston R., Moore D., Seidman J., Smith J., Strauhle K. 1988 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  6. Baynham P., Brown A., Hall L., Wozniak D. 1999; Pseudomonas aeruginosa AlgA, a ribbon helix–helix DNA-binding protein, is essential for alginate synthesis and algD transcriptional activities. Mol Microbiol 33:1069–1080 [CrossRef]
    [Google Scholar]
  7. Bergan T. 1981; Pathogenetic factors of Pseudomonas aeruginosa. Scand J Infect Dis Suppl 29:7–12
    [Google Scholar]
  8. Carty N. L., Rumbaugh K. P., Hamood A. N. 2003; Regulation of toxA by PtxR in the Pseudomonas aeruginosa strain PA103. Can J Microbiol 49:450–464 [CrossRef]
    [Google Scholar]
  9. Castaing B., Zelwer C., Laval J., Boiteux S. 1995; HU protein of Escherichia coli binds specifically to DNA that contains single-strand breaks or gaps. J Biol Chem 270:10291–10296 [CrossRef]
    [Google Scholar]
  10. Colmer J. A., Hamood A. N. 1998; Characterization of ptxS, a Pseudomonas aeruginosa gene which interferes with the effect of the exotoxin A positive regulatory gene,ptxR . Mol Gen Genet 258:250–259 [CrossRef]
    [Google Scholar]
  11. Colmer J. A., Hamood A. N. 2001; Molecular analysis of the Pseudomonas aeruginosa regulatory genes ptxR and ptxS . Can J Microbiol 47:820–828 [CrossRef]
    [Google Scholar]
  12. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P. 1998; The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298 [CrossRef]
    [Google Scholar]
  13. Dekievit T. R., Iglewski B. H. 2000; Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849 [CrossRef]
    [Google Scholar]
  14. Delic-Attree I., Toussaint B., Vignais P. M. 1995; Cloning and sequence analyses of the genes coding for the integration host factor (IHF) and HU proteins of Pseudomonas aeruginosa . Gene 154:61–64 [CrossRef]
    [Google Scholar]
  15. Diggle S. P., Winzer K., Lazdunski A., Williams P., Camara M. 2002; Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 184:2576–2586 [CrossRef]
    [Google Scholar]
  16. Doring G., Maier M., Muller E., Bibi Z., Tummler B., Kharazmi A. 1987; Virulence factors of Pseudomonas aeruginosa . Antibiot Chemother 39:136–148
    [Google Scholar]
  17. Drlica K., Rouviere-Yaniv J. 1987; Histonelike proteins of bacteria. Microbiol Rev 51:301–319
    [Google Scholar]
  18. Essar D. A., Eberly L., Hadero A., Crawford I. P. 1990; Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900
    [Google Scholar]
  19. Ferrell E. P., Kanack K. J., Colmer J. A., Hamood A. N., West S. E. H. 2001; Pseudomonas aeruginosa Vfr binds to the ptxR/S promoter region to enhance ptxR transcription. Abstract B-199.. In 101st General Meeting of the ASM pp 85–86 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Frank D. W., Storey D. G., Hindahl M. S., Iglewski B. H. 1989; Differential regulation by iron of regA and toxA transcript accumulation in Pseudomonas aeruginosa . J Bacteriol 171:5304–5313
    [Google Scholar]
  21. Goldberg J. B., Ohman D. E. 1984; Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J Bacteriol 158:1115–1121
    [Google Scholar]
  22. Govan J. R., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev 60:539–576
    [Google Scholar]
  23. Hamood A. N., Colmer J. A. 2000; Analysis of the in vivo transcription of the Pseudomnas aeruginosa toxA regulatory gene, ptxR, using promoter fusion experiments. Abstract B-216. In 100th General Meeting of the American Society for Microbiologyp– 90 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  24. Hamood A. N., Colmer J. A., Ochsner U. A., Vasil M. L. 1996; Isolation and characterization of a Pseudomonas aeruginosagene, ptxR, which positively regulates exotoxin A production.. Mol Microbiol 21:97–110 [CrossRef]
    [Google Scholar]
  25. Hirakata Y., Furuya N., Tateda K., Matsumoto T., Yamaguchi K. 1995; The influence of exo-enzyme S and proteases on endogenous Pseudomonas aeruginosa bacteraemia in mice. J Med Microbiol 43:258–261 [CrossRef]
    [Google Scholar]
  26. Holloway B. W., Krishnapillai V., Morgan A. F. 1979; Chromosomal genetics of Pseudomonas. Microbiol Rev 43:2907–2929
    [Google Scholar]
  27. Hovey A., Frank D. W. 1995; Analysis of the DNA binding and transcriptional activation properties of ExsA, a transcriptional activator of the Pseudomonas aeruginosa exoenzyme S regulon. J Bacteriol 177:4427–4436
    [Google Scholar]
  28. Iglewski B. H., Kabat D. 1975; NAD-dependent inhibition of protein synthesis by Pseudomonas aeruginosa toxin. Proc Natl Acad Sci U S A 72:2284–2288 [CrossRef]
    [Google Scholar]
  29. Latifi A., Winson M. K., Foglino M., Bycroft B. W., Stewart G. S., Lazdunski A., Williams P. 1995; Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Mol Microbiol 17:333–343 [CrossRef]
    [Google Scholar]
  30. Latifi A., Foglino M., Tanaka K., Williams P., Lazdunski A. 1996; A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21:1137–1146 [CrossRef]
    [Google Scholar]
  31. Liu P. V. 1966; The roles of various fractions of Pseudomonas aeruginosa in its pathogenesis. III. Identity of the lethal toxins producedin vitro and in vivo . J Infect Dis 116:481–489 [CrossRef]
    [Google Scholar]
  32. Lucht J. M., Dersch P., Kempf B., Bremer E. 1994; Interactions of the nucleoid-associated DNA-binding protein H-NS with the regulatory region of the osmotically controlled proU operon of Escherichia coli . J Biol Chem 269:6578–6586
    [Google Scholar]
  33. Lyczak J. B., Cannon C. L., Pier G. B. 2000; Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060 [CrossRef]
    [Google Scholar]
  34. McKnight S. L., Iglewski B. H., Pesci E. C. 2000; The. Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182:2702–2708 [CrossRef]
    [Google Scholar]
  35. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Milton D. L., O'Toole R., Horstedt P., Wolf-Watz H. 1996; Flagellin A is essential for the virulence of Vibrio anguillarum . J Bacteriol 178:1310–1319
    [Google Scholar]
  37. Nicas T. I., Iglewski B. H. 1985; The contribution of exoproducts to virulence of Pseudomonas aeruginosa. Can J Microbiol 31:387–392 [CrossRef]
    [Google Scholar]
  38. Ohman D. E., Sadoff J. C., Iglewski B. H. 1980; Toxin A-deficient mutants of Pseudomonas aeruginosa PA103: isolation and characterization. Infect Immun 28:899–908
    [Google Scholar]
  39. Pearson J. P., Gray K. M., Passador L., Tucker K. D., Eberhard A., Iglewski B. H., Greenberg E. P. 1994; Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A 91:197–201 [CrossRef]
    [Google Scholar]
  40. Pessi G., Williams F., Hindle Z., Heurlier K., Holden M. T., Camara M., Haas D., Williams P. 2001; The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa . J Bacteriol 183:6676–6683 erratum 184, 335
    [Google Scholar]
  41. Pollack M. 1995; Pseudomonas aeruginosa. In Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases pp. 1980–2003 Edited by Mandell G. L., Douglas R. G., Bennet J. E. New York: Churchill Livingstone;
    [Google Scholar]
  42. Pontiaggia A., Negri A., Beltrame M., Bianchi M. E. 1993; Protein HU binds specifically to kinked DNA. Mol Microbiol 7:343–350 [CrossRef]
    [Google Scholar]
  43. Reimmann C., Beyeler M., Latifi A., Winteler H., Foglino M., Lazdunski A., Haas D. 1997; The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24:309–319 [CrossRef]
    [Google Scholar]
  44. Rescalli E., Saini S., Bartocci C., Rychlewski L., De Lorenzo V., Bertoni G. 2004; Novel physiological modulation of the Pu promoter of TOL plasmid: negative regulatory role of the TurA protein of Pseudomonas putida in the response to suboptimal growth temperatures. J Biol Chem 279:7777–7784 [CrossRef]
    [Google Scholar]
  45. Rosenthal R. S., Rodwell V. W. 1998; Purification and characterization of the heteromeric transcriptional activator MvaT of the Pseudomonas mevalonii mvaAB operon. Protein Sci 7:178–184 [CrossRef]
    [Google Scholar]
  46. Rumbaugh K. P., Griswold J. A., Hamood A. N. 2000; The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa . Microbes Infect 2:1721–1731 [CrossRef]
    [Google Scholar]
  47. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  48. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology 1:784–791 [CrossRef]
    [Google Scholar]
  49. Smith A., Iglewski B. H. 1989; Transformation of Pseudomonas aeruginosa by electroporation. Nucleic Acids Res 17:10509 [CrossRef]
    [Google Scholar]
  50. Swanson B. L., Colmer J. A., Hamood A. N. 1999; The Pseudomonas aeruginosa exotoxin A regulatory gene, ptxS: evidence for negative autoregulation. J Bacteriol 181:4890–4895
    [Google Scholar]
  51. Swanson B. L., Hager P., Phibbs P. Jr, Ochsner U. A., Vasil M. L., Hamood A. N. 2000; Characterization of the 2-ketogluconate utilization operon in Pseudomonas aeruginosa PAO1. Mol Microbiol 37:561–573
    [Google Scholar]
  52. Tabor S., Richardson C. 1985; A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 82:1074–1078 [CrossRef]
    [Google Scholar]
  53. Tendeng C., Soutourina O. A., Danchin A., Bertin P. N. 2003; MvaT proteins in Pseudomonas spp. a novel class of H-NS-like proteins. Microbiology 149:3047–3050 [CrossRef]
    [Google Scholar]
  54. Vallet I., Diggle S. P., Stacey R. E., Camara M., Ventre I., Lory S., Lazdunski A., Williams P., Filloux A. 2004; Biofilm formation in Pseudomonas aeruginosa: fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT. J Bacteriol 186:2880–2890 [CrossRef]
    [Google Scholar]
  55. Van Delden C., Iglewski B. H. 1998; Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560 [CrossRef]
    [Google Scholar]
  56. Wagner V. E., Bushnell D., Passador L., Brooks A. I., Iglewski B. H. 2003; Microarray analysis of Pseudomonas aeruginosaquorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095 [CrossRef]
    [Google Scholar]
  57. West S. E., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J. 1994; Construction of improved EscherichiaPseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication inPseudomonas aeruginosa . Gene 148:81–86 [CrossRef]
    [Google Scholar]
  58. White B. A. 1993 PCR Protocols: Current Methods and Applications Totowa, NJ: Humana;
    [Google Scholar]
  59. Winson M. K., Camara M., Latifi A. 10 other authors 1995; Multiple N-acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites inPseudomonas aeruginosa . Proc Natl Acad Sci U S A 92:9427–9431 [CrossRef]
    [Google Scholar]
  60. Winzer K., Falconer C., Garber N. C., Diggle S. P., Camara M., Williams P. 2000; The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 182:6401–6411 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27270-0
Loading
/content/journal/micro/10.1099/mic.0.27270-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed