1887

Abstract

PYR-1 is capable of degrading polycyclic aromatic hydrocarbons (PAHs) to ring cleavage metabolites. This study identified and characterized a putative phthalate degradation operon in the PYR-1 genome. A putative regulatory protein () was encoded divergently with five tandem genes: phthalate dioxygenase large subunit (), small subunit (), phthalate dihydrodiol dehydrogenase (), phthalate dioxygenase ferredoxin subunit () and phthalate dioxygenase ferredoxin reductase (). A 6·7 kb RI fragment containing these genes was cloned into and converted phthalate to 3,4-dihydroxyphthalate. Homologues to the operon region were detected in a number of PAH-degrading spp. isolated from various geographical locations. The operon differs from those of other Gram-positive bacteria in both the placement and orientation of the regulatory gene. In addition, the PYR-1 operon contains no decarboxylase gene and none was identified within a 37 kb region containing the operon. This study is the first report of a phthalate degradation operon in spp.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27263-0
2004-11-01
2020-07-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503749.html?itemId=/content/journal/micro/10.1099/mic.0.27263-0&mimeType=html&fmt=ahah

References

  1. Apajalahti J. H., Salkinoja-Salonen M. S. 1987; Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus. J Bacteriol169:675–681
    [Google Scholar]
  2. Api A. M. 2001; Toxicological profile of diethyl phthalate: a vehicle for fragrance and cosmetic ingredients. Food Chem Toxicol39:97–108[CrossRef]
    [Google Scholar]
  3. Barnsley E. A. 1983; Phthalate pathway of phenanthrene metabolism: formation of 2-carboxybenzalpyruvate. J Bacteriol154:113–117
    [Google Scholar]
  4. Beam H. W., Perry J. J. 1974; Microbial degradation of cycloparaffinic hydrocarbons via co-metabolism and commensalism. J Gen Microbiol82:163–169[CrossRef]
    [Google Scholar]
  5. Blevins W. T., Perry J. J. 1972; Metabolism of propane, n-propylamine, and propionate by hydrocarbon-utilizing bacteria. J Bacteriol112:513–518
    [Google Scholar]
  6. Bogan B. W., Lahner L. M., Sullivan W. R., Paterek J. R. 2003; Degradation of straight-chain aliphatic and high-molecular-weight polycyclic aromatic hydrocarbons by a strain of Mycobacterium austroafricanum. J Appl Microbiol94:230–239[CrossRef]
    [Google Scholar]
  7. Boldrin B., Tiehm A., Fritzsche C. 1993; Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Appl Environ Microbiol59:1927–1930
    [Google Scholar]
  8. Bottger E. C., Kirschner P., Springer B., Zumft W. 1997; Mycobacteria degrading polycyclic aromatic hydrocarbons. Int J Syst Bacteriol47:247[CrossRef]
    [Google Scholar]
  9. Brautaset T., Sekurova O. N., Sletta H., Ellingsen T. E., StrLm A. R., Valla S., Zotchev S. B. 2000; Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. Chem Biol7:395–403[CrossRef]
    [Google Scholar]
  10. Brezna B., Khan A. A., Cerniglia C. E. 2003; Molecular characterization of dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium spp. FEMS Microbiol Lett223:177–183[CrossRef]
    [Google Scholar]
  11. Burback B. L., Perry J. J. 1993; Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae. Appl Environ Microbiol59:1025–1029
    [Google Scholar]
  12. Cadogan D. F., Papez M., Poppe A. C., Pugh D. M., Scheubel J. 1993; An assessment of the release, occurrence and possible effects of plasticizers in the environment. Prog Rubber Plastics Technol10:1–19
    [Google Scholar]
  13. Cerniglia C. E., Blevins W. T., Perry J. J. 1976; Microbial oxidation and assimilation of propylene. Appl Environ Microbiol32:764–768
    [Google Scholar]
  14. Chang H.-K., Zylstra G. J. 1998; Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1. J Bacteriol180:6529–6537
    [Google Scholar]
  15. Cobellis L., Latini G., Felice C. D., Razzi S., Paris I., Ruggieri F., Mazzeo P., Petraglia F. 2003; High plasma concentrations of di(2-ethylhexyl)-phthalate in women with endometriosis. Hum Reprod18:1512–1515[CrossRef]
    [Google Scholar]
  16. Contzen M., Stolz A. 2000; Characterization of the genes for two protocatechuate 3,4-dioxygenases from the 4-sulfocatechol-degrading bacterium Agrobacterium radiobacter strain S2. J Bacteriol182:6123–6129[CrossRef]
    [Google Scholar]
  17. Dean-Ross D., Cerniglia C. E. 1996; Degradation of pyrene by Mycobacterium flavescens. Appl Microbiol Biotechnol46:307–312[CrossRef]
    [Google Scholar]
  18. Dean-Ross D., Moody J. D., Freeman J. P., Doerge D. R., Cerniglia C. E. 2001; Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol Lett204:205–211[CrossRef]
    [Google Scholar]
  19. Donald L. J., Hosfield D. J., Cuvelier S. L., Ens W., Standing K. G., Duckworth H. W. 2001; Mass spectrometric study of the Escherichia coli repressor proteins, Ic1R and Gc1R, and their complexes with DNA. Protein Sci10:1370–1380
    [Google Scholar]
  20. Duty S. M., Singh N. P., Silva M. J., Barr D. B., Brock J. W., Ryan L., Herrick R., Christiani D. C., Hauser R. 2003; The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay. Environ Health Perspect111:1164–1169
    [Google Scholar]
  21. Eaton R. W. 2001; Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J Bacteriol183:3689–3703[CrossRef]
    [Google Scholar]
  22. Eulberg D., Schlomann M. 1998; The putative regulator of catechol catabolism in Rhodococcus opacus 1CP – an IclR-type, not a LysR-type transcriptional regulator. Antonie van Leeuwenhoek74:71–82[CrossRef]
    [Google Scholar]
  23. Graham P. R. 1973; Phthalate ester plasticizers – why and how they are used. Environ Health Perspect3:3–12
    [Google Scholar]
  24. Grifoll M., Selifonov S. A., Chapman P. J. 1994; Evidence for a novel pathway in the degradation of fluorene by Pseudomonassp. strain F274. Appl Environ Microbiol60:2438–2449
    [Google Scholar]
  25. Grosser R. J., Warshawsky D., Vestal J. R. 1991; Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils. Appl Environ Microbiol57:3462–3469
    [Google Scholar]
  26. Habe H., Miyakoshi M., Chung J., Kasuga K., Yoshida T., Nojiri H., Omori T. 2003; Phthalate catabolic gene cluster is linked to the angular dioxygenase gene in Terrabacter sp. strain DBF63. Appl Microbiol Biotechnol61:44–54[CrossRef]
    [Google Scholar]
  27. Heitkamp M. A., Cerniglia C. E. 1988; Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl Environ Microbiol54:1612–1614
    [Google Scholar]
  28. Heitkamp M. A., Cerniglia C. E. 1989; Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl Environ Microbiol55:1968–1973
    [Google Scholar]
  29. Heitkamp M. A., Franklin W., Cerniglia C. E. 1988a; Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl Environ Microbiol54:2549–2555
    [Google Scholar]
  30. Heitkamp M. A., Freeman J. P., Miller D. W., Cerniglia C. E. 1988b; Pyrene degradation by a Mycobacterium sp. Identification of ring oxidation and ring fission products. Appl Environ Microbiol54:2556–2565
    [Google Scholar]
  31. Iizuka H. E. A. 1975; Method of recovering microbial cells containing protein. US PatentNo: 3888736
    [Google Scholar]
  32. Kelley I., Freeman J. P., Evans F. E., Cerniglia C. E. 1993; Identification of metabolites from the degradation of fluoranthene by Mycobacterium sp. strain PYR-1. Appl Environ Microbiol59:800–806
    [Google Scholar]
  33. Khan A. A., Wang R.-F., Cao W.-W., Doerge D. R., Wennerstrom D., Cerniglia C. E. 2001; Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl Environ Microbiol67:3577–3585[CrossRef]
    [Google Scholar]
  34. Khan A. A., Kim S.-J., Paine D. D., Cerniglia C. E. 2002; Classification of a polycyclic aromatic hydrocarbon-metabolizing bacterium, Mycobacterium sp. strain PYR-1 as Mycobacterium vanbaalenii sp. nov. . Int J Syst Evol Microbiol52:1997–2002[CrossRef]
    [Google Scholar]
  35. King D. H., Perry J. J. 1975; The origin of fatty acids in the hydrocarbon-utilizing microorganism Mycobacterium vaccae. Can J Microbiol21:85–89[CrossRef]
    [Google Scholar]
  36. Kiyohara H., Nagao K. 1978; The catabolism of phenanthrene and anthracene by bacteria. J Gen Microbiol105:69–75[CrossRef]
    [Google Scholar]
  37. Krivobok S., Kuony S., Meyer C., Louwagie M., Willison J. C., Jouanneau Y. 2003; Identification of pyrene-induced proteins in Mycobacterium sp. strain 6PY1: evidence for two ring-hydroxylating dioxygenases. J Bacteriol185:3828–3841[CrossRef]
    [Google Scholar]
  38. Larkin M. J., Allen C. C., Kulakov L. A., Lipscomb D. A. 1999; Purification and characterization of a novel naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. . J Bacteriol181:6200–6204
    [Google Scholar]
  39. Marchler-Bauer A., Anderson J. B., DeWeese-Scott C. & 24 other authors. 2003; CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res31:383–387[CrossRef]
    [Google Scholar]
  40. Martin V. J., Mohn W. W. 2000; Genetic investigation of the catabolic pathway for degradation of abietane diterpenoids by Pseudomonas abietaniphila BKME-9. . J Bacteriol182:3784–3793[CrossRef]
    [Google Scholar]
  41. Masai E., Yamada A., Healy J. M., Hatta T., Kimbara K., Fukuda M., Yano K. 1995; Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl Environ Microbiol61:2079–2085
    [Google Scholar]
  42. Moody J. D., Freeman J. P., Doerge D. R., Cerniglia C. E. 2001; Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl Environ Microbiol67:1476–1483[CrossRef]
    [Google Scholar]
  43. Moody J. D., Doerge D. R., Freeman J. P., Cerniglia C. E. 2002; Degradation of biphenyl by Mycobacterium sp. strain PYR-1. Appl Environ Microbiol58:364–369
    [Google Scholar]
  44. Moody J. D., Fu P. P., Freeman J. P., Cerniglia C. E. 2003; Regio- and stereoselective metabolism of 7,12-dimethylbenz[a]anthracene byMycobacterium vanbaalenii PYR-1. Appl Environ Microbiol69:3924–3931[CrossRef]
    [Google Scholar]
  45. Moody J. D., Freeman J. P., Fu P. P., Cerniglia C. E. 2004; Degradation of benzo[a]pyrene byMycobacterium vanbaalenii PYR-1. Appl Environ Microbiol70:340–345[CrossRef]
    [Google Scholar]
  46. Nojiri H., Kamakura M., Urata M., Tanaka T., Chung J. S., Takemura T., Yoshida T., Habe H., Omori T. 2002; Dioxin catabolic genes are dispersed on the Terrabacter sp. DBF63 genome.. Biochem Biophys Res Commun296:233–240[CrossRef]
    [Google Scholar]
  47. Nomura Y., Nakagawa M., Ogawa N., Harashima S., Oshima Y. 1992; Genes in PHT plasmid encoding the initial degradation pathway of phthalate in Pseudomonas putida. J Ferment Bioeng74:333–344[CrossRef]
    [Google Scholar]
  48. Peakall D. B. 1975; Phthalate esters: occurrence and biological effects. Residue Rev54:1–41
    [Google Scholar]
  49. Saito A., Iwabuchi T., Harayama S. 1999; Characterization of genes for enzymes involved in the phenanthrene degradation in Nocardioides sp. KP7. Chemosphere38:1331–1337[CrossRef]
    [Google Scholar]
  50. Saito A., Iwabuchi T., Harayama S. 2000; A novel phenanthrene dioxygenase from Nocardioides sp. strain KP7: expression in Escherichia coli. J Bacteriol182:2134–2141[CrossRef]
    [Google Scholar]
  51. Schneider J., Grosser R., Jayasimhulu K., Xue W., Warshawsky D. 1996; Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol62:13–19
    [Google Scholar]
  52. Sepic E., Bricelj M., Leskovsek H. 1998; Degradation of fluoranthene by Pasteurella sp. IFA and Mycobacterium sp. PYR-1: isolation and identification of metabolites. J Appl Microbiol85:746–754[CrossRef]
    [Google Scholar]
  53. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr. 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol4:1911–1919[CrossRef]
    [Google Scholar]
  54. Stingley R. L., Khan A. A., Cerniglia C. E. 2004; Molecular characterization of a phenanthrene degradation pathway in Mycobacterium vanbaalenii PYR-1. Biochem Biophys Res Commun322:133–146[CrossRef]
    [Google Scholar]
  55. Tickner J. A., Schettler T., Guidotti T., McCally M., Rossi M. 2001; Health risks posed by use of di-2-ethylhexyl phthalate (DEHP) in PVC medical devices: a critical review. Am J Ind Med39:100–111[CrossRef]
    [Google Scholar]
  56. Torres B., Porras G., Garcia J. L., Diaz E. 2003; Regulation of the mhp cluster responsible for 3-(3-hydroxyphenyl)propionic acid degradation in Escherichia coli. J Biol Chem278:27575–27585[CrossRef]
    [Google Scholar]
  57. Trautwein G., Gerischer U. 2001; Effects exerted by transcriptional regulator PcaU from Acinetobacter sp. strain ADP1. J Bacteriol183:873–881[CrossRef]
    [Google Scholar]
  58. Treadway S. L., Yanagimachi K. S., Lankenau E., Lessard P. A., Stephanopoulos G., Sinskey A. J. 1999; Isolation and characterization of indene bioconversion genes from Rhodococcus strain I24. Appl Microbiol Biotechnol51:786–793[CrossRef]
    [Google Scholar]
  59. Vestal J. R., Perry J. J. 1969; Divergent metabolic pathways for propane and propionate utilization by a soil isolate. J Bacteriol99:216–221
    [Google Scholar]
  60. Willumsen P., Karlson U., Stackebrandt E., Kroppenstedt R. M. 2001; Mycobacterium frederiksbergense sp. nov., a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. Int J Syst Bacteriol51:1715–1722[CrossRef]
    [Google Scholar]
  61. Yamamoto K., Ishihama A. 2003; Two different modes of transcription repression of the Escherichia coli acetate operon by IclR. Mol Microbiol47:183–194
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27263-0
Loading
/content/journal/micro/10.1099/mic.0.27263-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error