1887

Abstract

Nutrient enrichment is known to increase bacterioplankton population density in a variety of Antarctic freshwater lakes. However, relatively little is known about the associated changes in species composition. In this study, the bacterioplankton community composition of one such lake was studied following natural nutrient enrichment to investigate the resistance of the system to environmental change. Heywood Lake is an enriched freshwater maritime Antarctic lake, with nitrogen and phosphorus concentrations significantly higher than its more oligotrophic neighbours (by at least an order of magnitude). This major change in lake chemistry has occurred following large increases in the fur seal population over the last 30 years. Using analysis of 16S rRNA gene fragments, fatty acid methyl ester analysis, denaturing gradient gel electrophoresis and fluorescence hybridization, significant changes are reported in lake microbiology which have resulted in a distinct bacterioplankton community. In comparison to its more oligotrophic neighbours, nutrient-enriched Heywood Lake has a high bacterioplankton population density, reduced species richness and an increasing evenness among key groups. Only 42·3 % of the clones found with ≥97 % similarity to a named genus were also present in adjacent oligotrophic lakes, including three of the dominant groups. Critically, there was an apparent shift in dominance with trophic status (from the - to the ). Other key observations included the absence of a dominant group of and the presence of marine bacteria. The significant impact of natural nutrient enrichment on the microbiology of Heywood Lake, therefore, suggests that low-temperature oligotrophic freshwater lake systems might have low resistance to environmental change.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27258-0
2005-10-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/151/10/3237.html?itemId=/content/journal/micro/10.1099/mic.0.27258-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T., Schäffer, A. A., Zhang, J., Zhang, Z. W., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Andrade, D. S., Murphy, P. J. & Giller, K. E. ( 2002; ). The diversity of Phaseolus-nodulating rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgaris L. in Brazil. Appl Environ Microbiol 68, 4025–4034.[CrossRef]
    [Google Scholar]
  3. Bell, E. M. & Laybourn-Parry, J. ( 1999; ). The plankton community of a young, eutrophic, Antarctic saline lake. Polar Biol 22, 248–253.[CrossRef]
    [Google Scholar]
  4. Bester, M. N., Ryan, P. G. & Dyer, B. M. ( 2003; ). Population numbers of fur seals at Prince Edward Island, Southern Ocean. Afr J Mar Sci 25, 549–554.[CrossRef]
    [Google Scholar]
  5. Butler, H. G. ( 1999a; ). Seasonal dynamics of the planktonic microbial community in a maritime Antarctic lake undergoing eutrophication. J Plankton Res 21, 2393–2419.[CrossRef]
    [Google Scholar]
  6. Butler, H. G. ( 1999b; ). Temporal plankton dynamics in a maritime Antarctic lake. Arch Hydrobiol 146, 311–339.
    [Google Scholar]
  7. Butler, H. G., Edworthy, M. G. & Ellis-Evans, J. C. ( 2000; ). Temporal plankton dynamics in an oligotrophic maritime Antarctic lake. Freshw Biol 43, 215–230.[CrossRef]
    [Google Scholar]
  8. Crump, B. C., Kling, G. W., Bahr, M. & Hobbie, J. E. ( 2003; ). Bacterioplankton community shifts in an Arctic Lake correlate with seasonal changes in organic matter source. Appl Environ Microbiol 69, 2253–2268.[CrossRef]
    [Google Scholar]
  9. D'Elia, C. F., Steudler, P. A. & Corwin, N. ( 1977; ). Determination of total nitrogen in aqueous samples using persulphate digestion. Limnol Oceanogr 22, 760–764.[CrossRef]
    [Google Scholar]
  10. Donner, G., Schwartz, K., Hoppe, H.-G. & Muyzer, G. ( 1996; ). Profiling the succession of bacterial populations in pelagic chemoclines. Arch Hydrobiol Spec Issue Adv Limnol 48, 7–14.
    [Google Scholar]
  11. Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J. P. & Raoult, D. ( 2000; ). 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol 38, 3623–3630.
    [Google Scholar]
  12. Dunbar, J., Takala, S., Barns, S. M., Davis, J. A. & Kuske, C. R. ( 1999; ). Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Env Microbiol 65, 1662–1669.
    [Google Scholar]
  13. Ellis-Evans, J. C. ( 1982; ). Seasonal microbial activity in Antarctic freshwater lake sediments. Polar Biol 1, 129–140.[CrossRef]
    [Google Scholar]
  14. Ellis-Evans, J. C. ( 1990; ). Evidence for change in the chemistry of maritime Antarctic Heywood Lake. In Antarctic Ecosystems, Ecological Change & Conservation, pp. 77–82. Edited by K. R. Kerry & G. Hempel. Berlin: Springer.
  15. Finlay, B. J. & Maberly, S. C. ( 2000; ). Microbial Diversity in Priest Pot: A Productive Pond in the English Lake District. Edited by D. W. Sutcliffe. Ambleside: Freshwater Biological Association.
  16. Fogg, G. E. ( 1998; ). The Biology of Polar Habitats. Oxford: Oxford University Press.
  17. Glöckner, F. O., Zaichikov, E., Belkova, N., Denissova, L., Pernthaler, J., Pernthaler, A. & Amann, R. ( 2000; ). Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl Environ Microbiol 66, 5053–5065.[CrossRef]
    [Google Scholar]
  18. Good, I. J. ( 1953; ). On the population frequencies of species and the estimation of population parameters. Biometrika 40, 237–264.[CrossRef]
    [Google Scholar]
  19. Hahn, M. W. ( 2003; ). Isolation of novel ultramicrobacteria classified as Actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 69, 1442–1451.[CrossRef]
    [Google Scholar]
  20. Hawes, I. ( 1990; ). Eutrophication and vegetation development in maritime Antarctic lakes. In Antarctic Ecosystems, Ecological Change & Conservation, pp. 83–90. Edited by K. R. Kerry & G. Hempel. Berlin: Springer.
  21. Heywood, R. B., Dartnall, H. J. G. & Priddle, J. ( 1980; ). Characteristics and classification of the lakes of Signy Island, South Orkney Islands, Antarctica. Freshw Biol 10, 47–59.[CrossRef]
    [Google Scholar]
  22. Hiorns, W. D., Methé, B. A., Nierzwicki-Bauer, S. A. & Zehr, J. P. ( 1997; ). Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences. Appl Environ Microbiol 63, 2957–2960.
    [Google Scholar]
  23. Irgens, R. L., Gosink, J. J. & Staley, J. T. ( 1996; ). Polaromonas vacuolata gen. nov., sp. nov. a psychrophilic, marine, gas vacuolated bacterium from Antarctica. Int J Syst Bacteriol 46, 822–826.[CrossRef]
    [Google Scholar]
  24. Izaguirre, I., Mataloni, G., Allende, L. & Vinocur, A. ( 2001; ). Summer fluctuations of microbial planktonic communities in a eutrophic lake – Cierva Point, Antarctica. J Plankton Res 23, 1095–1109.[CrossRef]
    [Google Scholar]
  25. Jones, V. J., Hodgson, D. A. & Chepstow-Lusty, A. ( 2000; ). Palaeolimnological evidence for marked Holocene environmental changes on Signy Island, Antarctica. The Holocene 10, 43–60.[CrossRef]
    [Google Scholar]
  26. Kirchman, D. L. ( 2002; ). The ecology of Cytophaga–Flavobacterium in aquatic environments. FEMS Microbiol Ecol 39, 91–100.
    [Google Scholar]
  27. Korsunov, V. M., Namsaraev, B. B., Gonchikov, G. G., Kozireva, L. P., Zakiyan, S. M. & Zemskaya, T. I. ( 2003; ). Phylogenetic diversity of extremophiles in Baikal region: ecological and biotechnological aspects. http://www.bionet.nsc.ru/misc/ecopro/eng/1_12.html (accessed 8 May 2003).
  28. Laybourn-Parry, J., Ellis-Evans, J. C. & Butler, H. ( 1996; ). Microbial dynamics during the summer ice-loss phase in maritime Antarctic lakes. J Plankton Res 18, 495–511.[CrossRef]
    [Google Scholar]
  29. Lindström, E. S. ( 2000; ). Bacterioplankton community composition in five lakes differing in trophic status and humic content. Microb Ecol 40, 104–113.
    [Google Scholar]
  30. Lindström, E. S. & Leskinen, E. ( 2002; ). Do neighbouring lakes share common taxa of bacterioplankton? Comparison of 16S rDNA fingerprints and sequences from three geographic regions. Microbial Ecol 44, 1–9.[CrossRef]
    [Google Scholar]
  31. Mackereth, F. J. H., Heron, J. & Talling, J. F. ( 1989; ). Water Analysis: Some Revised Methods for Limnologists. Ambleside: Freshwater Biological Association.
  32. Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. ( 1993; ). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59, 695–700.
    [Google Scholar]
  33. Noon, P. E., Leng, M. J., Arrowsmith, C., Edworthy, M. G. & Strachan, R. J. ( 2002; ). Seasonal observations of stable isotope variations in a valley catchment, Signy Island, South Orkney Islands. Antarctic Sci 14, 333–342.[CrossRef]
    [Google Scholar]
  34. Pearce, D. A. ( 2000; ). A rapid, sensitive method for monitoring bacterioplankton community dynamics, applied to Antarctic freshwater lakes. Polar Biol 23, 352–356.[CrossRef]
    [Google Scholar]
  35. Pearce, D. A. ( 2003; ). Bacterioplankton community structure in a maritime Antarctic oligotrophic lake during a period of holomixis, as determined by denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridisation (FISH). Microb Ecol 46, 92–105.[CrossRef]
    [Google Scholar]
  36. Pearce, D. A. ( 2005; ). The structure and stability of the bacterioplankton community in Antarctic freshwater lakes, subject to extremely rapid environmental change. FEMS Microb Ecol 53, 61–72.[CrossRef]
    [Google Scholar]
  37. Pearce, D. A., van der Gast, C., Lawley, B. & Ellis-Evans, J. C. ( 2003; ). Bacterioplankton community diversity in a maritime Antarctic lake, as determined by culture dependent and culture independent techniques. FEMS Microbiol Ecol 45, 59–70.[CrossRef]
    [Google Scholar]
  38. Pinhassi, J., Zweifel, U. L. & Hagström, A. ( 1997; ). Dominant marine bacterioplankton species found among colony-forming bacteria. Appl Environ Microbiol 63, 3359–3366.
    [Google Scholar]
  39. Porter, K. G. & Feig, Y. S. ( 1980; ). The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25, 943–948.[CrossRef]
    [Google Scholar]
  40. Quayle, W. C., Peck, L. S., Peat, H., Ellis-Evans, J. C. & Harrigan, P. R. ( 2002; ). Extreme responses to climate change in Antarctic lakes. Science 295, 645.[CrossRef]
    [Google Scholar]
  41. Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. ( 2002; ). Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24, 417–428.[CrossRef]
    [Google Scholar]
  42. Simpson, E. H. ( 1949; ). Measurement of diversity. Nature 163, 688.[CrossRef]
    [Google Scholar]
  43. Smith, R. I. L. ( 1997; ). Impact of an increasing fur seal population on Antarctic plant communities, resilience and recovery. In Antarctic communities: Species, Structure & Survival. Edited by B. Battaglia, J. Valencia & D. W. H. Walton. Cambridge: Cambridge University Press.
  44. Smith, V. H. ( 1983; ). Low nitrogen to phosphorus ratios favour dominance by blue-green algae in lake phytoplankton. Science 221, 669–671.[CrossRef]
    [Google Scholar]
  45. Smith, V. H. ( 1990; ). Nitrogen, phosphorus and nitrogen fixation in lacustrine and estuarine ecosystems. Limnol Oceanogr 35, 1852–1859.[CrossRef]
    [Google Scholar]
  46. Stockner, J. G. ( 1988; ). Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnol Oceanogr 33, 765–775.[CrossRef]
    [Google Scholar]
  47. Stockner, J. G., Callieri, C. & Cronberg, G. ( 2000; ). Picoplankton and other non-bloom-forming Cyanobacteria in lakes. In the Ecology of Cyanobacteria, pp. 195–231. B. A. Whitton & M. Potts. The Netherlands: Kluwer.
  48. Thompson, I. P., Bailey, M. J., Ellis, R. J. & Purdy, K. J. ( 1993; ). Subgrouping of bacterial populations by cellular fatty acid composition. FEMS Microbiol Ecol 102, 75–84.[CrossRef]
    [Google Scholar]
  49. Trusova, M. Y. & Gladyshev, M. I. ( 2002; ). Phylogenetic diversity of winter bacterioplankton of eutrophic Siberian reservoirs as revealed by 16S rRNA gene sequences. Microb Ecol 44, 252–259.[CrossRef]
    [Google Scholar]
  50. Unrein, F. & Vinocur, A. ( 1999; ). Phytoplankton structure and dynamics in a turbid Antarctic lake (Potter Peninsula, King George Island). Polar Biol 22, 93–101.[CrossRef]
    [Google Scholar]
  51. Urbach, E., Vergin, K. L., Young, L., Morse, A., Larson, G. L. & Giovannoni, S. J. ( 2001; ). Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnol Oceanogr 46, 557–572.[CrossRef]
    [Google Scholar]
  52. van der Gast, C. J., Knowles, C. J., Wright, M. A. & Thompson, I. P. ( 2001; ). Identification and characterisation of bacterial populations of an in-use metal-working fluid by phenotypic and genotypic methodology. Int Biodeter Biodegr 47, 113–123.[CrossRef]
    [Google Scholar]
  53. Vincent, W. F., Bowman, J. P., Rankin, L. M. & McMeekin, T. A. ( 2000; ). Phylogenetic diversity of picocyanobacteria in Arctic and Antarctic ecosystems. In Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology, pp. 317–322. Edited by C. R. Bell, M. Brylinsky & P. Johnson-Green. Halifax, Canada: Atlantic Canada Society for Microbial Ecology.
  54. Welschmeyer, N. A. ( 1994; ). Fluorimetric analysis of chlorophyll-a in the presence of chlorophyll-b and pheopigments. Limnol Oceanogr 39, 1985–1992.[CrossRef]
    [Google Scholar]
  55. Yannarell, A. C., Kent, A. D., Lauster, G. H., Kratz, T. K. & Triplett, E. W. ( 2003; ). Temporal patterns in bacterioplankton communities in three temperate lakes of different trophic status. Microb Ecol 46, 391–405.[CrossRef]
    [Google Scholar]
  56. Zhu, F., Wang, S. & Zhou, P. J. ( 2003; ). Flavobacterium xinjiangense, sp. nov. and Flavobacterium omnivorum sp. nov., novel psychrophiles from the China No.1 glacier. Int J Syst Evol Microbiol 53, 853–857.[CrossRef]
    [Google Scholar]
  57. Zwart, G., Crump, B. C., Kamst-Agterveld, M. P., Hagen, F. & Han, S.-K. ( 2002; ). Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28, 141–155.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27258-0
Loading
/content/journal/micro/10.1099/mic.0.27258-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error