1887

Abstract

must overcome a variety of stress conditions in the host digestive tract to cause foodborne infections. The alternative sigma factor , encoded by , is responsible for regulating transcription of several virulence and stress-response genes, including genes that contribute to establishment of gastrointestinal infections. A quantitative RT-PCR assay was used to measure mRNA transcript accumulation for the virulence genes and , the stress-response genes and (encoding a carnitine transporter and an oxidoreductase, respectively) and the housekeeping gene . Assays were conducted on mid-exponential phase cells exposed to conditions reflecting osmotic (0·3 M NaCl) or acid (pH 4·5) conditions typical for the human intestinal lumen. In exponential-phase cells, as well as under osmotic and acid stress, , and showed significantly lower absolute expression levels in a Δ null mutant compared to wild-type. A statistical model that normalized target gene expression relative to showed that accumulation of , and transcripts was significantly increased in the wild-type strain within 5 min of acid and osmotic stress exposure; transcript accumulation increased significantly only after acid exposure. It was concluded that is essential for rapid induction of the tested stress-response and virulence genes under conditions typically encountered during gastrointestinal passage. As , and are critical for gastrointestinal infections in animal models, the data also suggest that contributes to the ability of to cause foodborne infections.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27257-0
2004-11-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503843.html?itemId=/content/journal/micro/10.1099/mic.0.27257-0&mimeType=html&fmt=ahah

References

  1. Badger, J. L. & Miller, V. L. ( 1995; ). Role of RpoS in survival of Yersinia enterocolitica to a variety of environmental stresses. J Bacteriol 177, 5370–5373.
    [Google Scholar]
  2. Becker, L. A., Cetin, M. S., Hutkins, R. W. & Benson, A. K. ( 1998; ). Identification of the gene encoding the alternative sigma factor σ B from Listeria monocytogenes and its role in osmotolerance. J Bacteriol 180, 4547–4554.
    [Google Scholar]
  3. Becker, L. A., Evans, S. N., Hutkins, R. W. & Benson, A. K. ( 2000; ). Role of σ B in adaptation of Listeria monocytogenes to growth at low temperature. J Bacteriol 182, 7083–7087.[CrossRef]
    [Google Scholar]
  4. Bishop, D. K. & Hinrichs, D. J. ( 1987; ). Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. J Immunol 139, 2005–2009.
    [Google Scholar]
  5. Brody, M. S. & Price, C. W. ( 1998; ). Bacillus licheniformis sigB operon encoding the general stress transcription factor sigma B. Gene 212, 111–118.[CrossRef]
    [Google Scholar]
  6. Cetin, M. S., Zhang, C., Hutkins, R. W. & Benson, A. K. ( 2004; ). Regulation of transcription of compatible solute transporters by the general stress sigma factor, σ B, in Listeria monocytogenes. J Bacteriol 186, 794–802.[CrossRef]
    [Google Scholar]
  7. Chakraborty, T., Leimeister-Wachter, M., Domann, E., Hartl, M., Goebel, W., Nichterlein, T. & Notermans, S. ( 1992; ). Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol 174, 568–574.
    [Google Scholar]
  8. Cheville, A. M., Arnold, K. W., Buchrieser, C., Cheng, C. M. & Kaspar, C. W. ( 1996; ). rpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157 : H7. Appl Environ Microbiol 62, 1822–1824.
    [Google Scholar]
  9. Chowduhry, R., Sahu, G. K. & Das, J. ( 1996; ). Stress response in pathogenic bacteria. J Biosci 21, 149–160.[CrossRef]
    [Google Scholar]
  10. Cole, M. B., Jones, M. V. & Holyoak, C. ( 1990; ). The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes. J Appl Bacteriol 69, 63–72.[CrossRef]
    [Google Scholar]
  11. Davenport, H. W. ( 1982; ). Physiology of the Digestive Tract: an Introductory Text, 5th edn. Chicago: Year Book Medical Publishers.
  12. Dussurget, O., Cabanes, D., Dehoux, P., Lecuit, M., Buchrieser, C., Glaser, P. & Cossart, P. ( 2002; ). Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45, 1095–1106.[CrossRef]
    [Google Scholar]
  13. Fang, F. C., Libby, S. J., Buchmeier, N. A., Loewen, P. C., Switala, J., Harwood, J. & Guiney, D. G. ( 1992; ). The alternative σ factor KatF (RpoS) regulates Salmonella virulence. Proc Natl Acad Sci U S A 89, 11978–11982.[CrossRef]
    [Google Scholar]
  14. Farber, J. M. & Peterkin, P. I. ( 1991; ). Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55, 476–511.
    [Google Scholar]
  15. Ferreira, A., O'Byrne, C. P. & Boor, K. J. ( 2001; ). Role of σ B in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl Environ Microbiol 67, 4454–4457.[CrossRef]
    [Google Scholar]
  16. Ferreira, A., Sue, D., O'Byrne, C. P. & Boor, K. J. ( 2003; ). Role of Listeria monocytogenes σ B in survival of lethal acidic conditions and in the acquired acid tolerance response. Appl Environ Microbiol 69, 2692–2698.[CrossRef]
    [Google Scholar]
  17. Flamm, R. K., Hinrichs, D. J. & Thomashow, M. F. ( 1984; ). Introduction of pAM beta 1 into Listeria monocytogenes by conjugation and homology between native L. monocytogenes plasmids. Infect Immun 44, 157–161.
    [Google Scholar]
  18. Fouet, A., Namy, O. & Lambert, G. ( 2000; ). Characterization of the operon encoding the alternative σ B factor from Bacillus anthracis and its role in virulence. J Bacteriol 182, 5036–5045.[CrossRef]
    [Google Scholar]
  19. Fraser, K. R., Sue, D., Wiedmann, M. & Boor, K. J. ( 2003; ). Role of σ B in regulating the compatible solute uptake systems of Listeria monocytogenes: osmotic induction of opuC is σ B-dependent. Appl Environ Microbiol 69, 2015–2022.[CrossRef]
    [Google Scholar]
  20. Freitag, N. E. & Portnoy, D. A. ( 1994; ). Dual promoters of the Listeria monocytogenes prfA transcriptional activator appear essential in vitro but are redundant in vivo. Mol Microbiol 12, 845–853.[CrossRef]
    [Google Scholar]
  21. Gaillard, J. L., Berche, P., Frehel, C., Gouin, E. & Cossart, P. ( 1991; ). Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from Gram-positive cocci. Cell 65, 1127–1141.[CrossRef]
    [Google Scholar]
  22. Gertz, S., Engelmann, S., Schmid, R., Ziebandt, A. K., Tischer, K., Scharf, C., Hacker, J. & Hecker, M. ( 2000; ). Characterization of the σ B regulon in Staphylococcus aureus. J Bacteriol 182, 6983–6991.[CrossRef]
    [Google Scholar]
  23. Giulietti, A., Overbergh, L., Valckx, D., Decallonne, B., Bouillon, R. & Mathieu, C. ( 2001; ). An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25, 386–401.[CrossRef]
    [Google Scholar]
  24. Graham, M. R., Smoot, L. M., Migliaccio, C. A. & 7 other authors ( 2002; ). Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A 99, 13855–13860.[CrossRef]
    [Google Scholar]
  25. Haldenwang, W. G. & Losick, R. ( 1980; ). Novel RNA polymerase σ factor from Bacillus subtilis. Proc Natl Acad Sci U S A 77, 7000–7004.[CrossRef]
    [Google Scholar]
  26. Hansen, M. C., Nielsen, A. K., Molin, S., Hammer, K. & Kilstrup, M. ( 2001; ). Changes in rRNA levels during stress invalidate results from mRNA blotting: fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels. J Bacteriol 183, 4747–4751.[CrossRef]
    [Google Scholar]
  27. Helmann, J. D., Wu, M. F., Kobel, P. A., Gamo, F. J., Wilson, M., Morshedi, M. M., Navre, M. & Paddon, C. ( 2001; ). Global transcriptional response of Bacillus subtilis to heat shock. J Bacteriol 183, 7318–7328.[CrossRef]
    [Google Scholar]
  28. Igo, M., Lampe, M., Ray, C., Schafer, W., Moran, C. P. & Losick, R. ( 1987; ). Genetic studies of a secondary RNA polymerase sigma factor in Bacillus subtilis. J Bacteriol 169, 3464–3469.
    [Google Scholar]
  29. Ihaka, R. & Gentleman, R. ( 1996; ). R: a language for data analysis and graphics. J Comp Graph Stat 5, 299–314.
    [Google Scholar]
  30. Iriarte, M., Stainier, I. & Cornelis, G. R. ( 1995; ). The rpoS gene from Yersinia enterocolitica and its influence on expression of virulence factors. Infect Immun 63, 1840–1847.
    [Google Scholar]
  31. Johansson, J., Mandin, P., Renzoni, A., Chiaruttini, C., Springer, M. & Cossart, P. ( 2002; ). An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110, 551–561.[CrossRef]
    [Google Scholar]
  32. Kazmierczak, M. J., Mithoe, S. C., Boor, K. J. & Wiedmann, M. ( 2003; ). Listeria monocytogenes σ B regulates stress response and virulence functions. J Bacteriol 185, 5722–5734.[CrossRef]
    [Google Scholar]
  33. Lecuit, M., Vandormael-Pournin, S., Lefort, J., Huerre, M., Gounon, P., Dupuy, C., Babinet, C. & Cossart, P. ( 2001; ). A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292, 1722–1725.[CrossRef]
    [Google Scholar]
  34. Lee, P. S., Shaw, L. B., Choe, L. H., Mehra, A., Hatzimanikatis, V. & Lee, K. H. ( 2003; ). Insights into the relation between mRNA and protein expression patterns: II. Experimental observations in Escherichia coli. Biotechnol Bioeng 84, 834–841.[CrossRef]
    [Google Scholar]
  35. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  36. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., Griffin, P. M. & Tauxe, R. V. ( 1999; ). Food-related illness and death in the United States. Emerg Infect Dis 5, 607–625.[CrossRef]
    [Google Scholar]
  37. Milohanic, E., Glaser, P., Coppee, J. Y., Frangeul, L., Vega, Y., Vazquez-Boland, J. A., Kunst, F., Cossart, P. & Buchrieser, C. ( 2003; ). Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol 47, 1613–1625.[CrossRef]
    [Google Scholar]
  38. Nadon, C., Bowen, B., Wiedmann, M. & Boor, K. J. ( 2002; ). σ B contributes to PrfA-mediated virulence in Listeria monocytogenes. Infect Immun 70, 3948–3952.[CrossRef]
    [Google Scholar]
  39. Petersohn, A., Brigulla, M., Haas, S., Hoheisel, J. D., Volker, U. & Hecker, M. ( 2001; ). Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 183, 5617–5631.[CrossRef]
    [Google Scholar]
  40. Price, C. W., Fawcett, P., Cérémonie, H., Su, N., Murphy, C. K. & Youngman, P. ( 2001; ). Genome-wide analysis of the general stress response in Bacillus subtilis. Mol Microbiol 41, 757–774.
    [Google Scholar]
  41. Silva, M. C. & Batt, C. A. ( 1995; ). Effect of cellular physiology on PCR amplification efficiency. Mol Ecol 4, 11–16.[CrossRef]
    [Google Scholar]
  42. Sleator, R. D., Gahan, C. G. M., O'Driscoll, B. & Hill, C. ( 2000; ). Analysis of the role of betL in contributing to the growth and survival of Listeria monocytogenes LO28. Int J Food Microbiol 60, 261–268.[CrossRef]
    [Google Scholar]
  43. Sleator, R. D., Wouters, J., Gahan, C. G., Abee, T. & Hill, C. ( 2001; ). Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Appl Environ Microbiol 67, 2692–2698.[CrossRef]
    [Google Scholar]
  44. Small, P., Blankenhorn, D., Welty, D., Zinser, E. & Slonczewski, J. L. ( 1994; ). Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol 176, 1729–1737.
    [Google Scholar]
  45. Smoot, L. M., Smoot, J. C., Graham, M. R., Somerville, G. A., Sturdevant, D. E., Migliaccio, C. A., Sylva, G. L. & Musser, J. M. ( 2001; ). Global differential gene expression in response to growth temperature alteration in group A Streptococcus. Proc Natl Acad Sci U S A 98, 10416–10421.[CrossRef]
    [Google Scholar]
  46. Sue, D., Boor, K. J. & Wiedmann, M. ( 2003; ). σ B-dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes. Microbiology 149, 3247–3256.[CrossRef]
    [Google Scholar]
  47. Takami, H., Takaki, Y. & Uchiyama, I. ( 2002; ). Genome sequence of Oceanobacillus iheyensis isolated from the Iheya Ridge and its unexpected adaptive capabilities to extreme environments. Nucleic Acids Res 30, 3927–3935.[CrossRef]
    [Google Scholar]
  48. Vandecasteele, S. J., Peetermans, W. E., Merckx, R. & Van Eldere, J. ( 2001; ). Quantification of expression of Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during in vitro growth and under different conditions. J Bacteriol 183, 7094–7101.[CrossRef]
    [Google Scholar]
  49. Venables, W. N. & Ripley, B. D. ( 2002; ). Modern Applied Statistics with S. 4th edn. New York: Springer.
  50. Wiedmann, M., Arvik, T. J., Hurley, R. J. & Boor, K. J. ( 1998; ). General stress transcription factor σ B and its role in acid tolerance and virulence of Listeria monocytogenes. J Bacteriol 180, 3650–3656.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27257-0
Loading
/content/journal/micro/10.1099/mic.0.27257-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error