1887

Abstract

The structural genes () encoding an uptake hydrogenase in the unicellular cyanobacterium sp. ATCC 27152, a strain capable of aerobic N fixation, were identified and sequenced. 3′-RACE experiments uncovered the presence of an additional ORF 184 bp downstream of , showing a high degree of sequence identity with a gene encoding an uptake-hydrogenase-specific endopeptidase () in other cyanobacteria. In addition, the transcription start point was identified 238 bp upstream of the translational start. RT-PCR experiments revealed that is co-transcribed with the uptake hydrogenase structural genes in sp. ATCC 27152. In addition, Northern hybridizations clearly showed that are transcribed under nitrogen fixing conditions, but not in the presence of combined nitrogen. A putative NtcA binding site was identified in the promoter region upstream of , centred at −41·5 bp with respect to the transcription start point. Electrophoretic retardation of a labelled DNA fragment (harbouring the putative NtcA-binding motif) was significantly affected by an cell-free extract containing overexpressed NtcA, suggesting that NtcA is involved in the transcriptional regulation of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27248-0
2004-11-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503647.html?itemId=/content/journal/micro/10.1099/mic.0.27248-0&mimeType=html&fmt=ahah

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1993; ). Current Protocols in Molecular Biology, chapter 4.9. New York: Greene Publishing Associates and Wiley-Interscience.
  2. Axelsson, R., Oxelfelt, F. & Lindblad, P. ( 1999; ). Transcriptional regulation of Nostoc uptake hydrogenase. FEMS Microbiol Lett 170, 77–81.[CrossRef]
    [Google Scholar]
  3. Blokesch, M., Paschos, A., Theodoratou, E., Bauer, A., Hube, M., Huth, S. & Bock, A. ( 2002; ). Metal insertion into NiFe-hydrogenases. Biochem Soc Trans 30, 674–680.
    [Google Scholar]
  4. Boison, G., Schmitz, O., Mikheeva, L., Shestakov, S. & Bothe, H. ( 1996; ). Cloning, molecular analysis and insertional mutagenesis of the bidirectional hydrogenase genes from the cyanobacterium Anacystis nidulans. FEBS Lett 394, 153–158.[CrossRef]
    [Google Scholar]
  5. Boison, G., Bothe, H. & Schmitz, O. ( 2000; ). Transcriptional analysis of hydrogenase genes in the cyanobacteria Anacystis nidulans and Anabaena variabilis monitored by RT-PCR. Curr Microbiol 40, 315–321.[CrossRef]
    [Google Scholar]
  6. Buhrke, T., Bleijlevens, B., Albracht, S. P. & Friedrich, B. ( 2001; ). Involvement of hyp gene products in maturation of the H2-sensing [NiFe] hydrogenase of Ralstonia eutropha. J Bacteriol 183, 7087–7093.[CrossRef]
    [Google Scholar]
  7. Carrasco, C. D. & Golden, J. W. ( 1995; ). Two heterocyst-specific DNA rearrangments of nif operons in Anabaena cylindrica and Nostoc sp. strain Mac. Microbiology 141, 2479–2487.[CrossRef]
    [Google Scholar]
  8. Casalot, L. & Rousset, M. ( 2001; ). Maturation of the [NiFe] hydrogenases. Trends Microbiol 9, 228–237.[CrossRef]
    [Google Scholar]
  9. Fiore, M. F., Moon, D. H., Tsai, S. M., Lee, H. & Trevors, J. T. ( 2000; ). Miniprep DNA isolation from unicellular and filamentous cyanobacteria. J Microbiol Methods 39, 159–169.[CrossRef]
    [Google Scholar]
  10. Fritsche, E., Paschos, A., Beisel, H. G., Böck, A. & Huber, R. ( 1999; ). Crystal structure of the hydrogenase maturating endopeptidase HybD from Escherichia coli. J Mol Biol 288, 989–998.[CrossRef]
    [Google Scholar]
  11. Hansel, A., Axelsson, R., Lindberg, P., Troshina, O., Wünschiers, R. & Lindblad, P. ( 2001; ). Cloning and characterization of a hyp gene cluster in the filamentous cyanobacterium Nostoc sp. strain PCC 73102. FEMS Microbiol Lett 201, 59–64.[CrossRef]
    [Google Scholar]
  12. Happe, T., Schütz, K. & Böhme, H. ( 2000; ). Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413. J Bacteriol 182, 1624–1631.[CrossRef]
    [Google Scholar]
  13. Herrero, A., Muro-Pastor, A. M. & Flores, E. ( 2001; ). Nitrogen control in cyanobacteria. J Bacteriol 183, 411–425.[CrossRef]
    [Google Scholar]
  14. Houchins, J. P. ( 1984; ). The physiology and biochemistry of hydrogen metabolism in cyanobacteria. Biochim Biophys Acta 768, 227–255.[CrossRef]
    [Google Scholar]
  15. Jiang, F., Wisén, S., Widersten, M., Bergman, B. & Mannervik, B. ( 2000; ). Examination of the transcription factor NtcA-binding motif by in vitro selection of DNA sequences from a random library. J Mol Biol 301, 783–793.[CrossRef]
    [Google Scholar]
  16. Lambert, G. R. & Smith, G. D. ( 1981; ). The hydrogen metabolism of cyanobacteria (blue-green algae). Biol Rev 56, 589–660.[CrossRef]
    [Google Scholar]
  17. Lindberg, P. ( 2003; ). Cyanobacterial hydrogen metabolism – Uptake hydrogenase and hydrogen production by nitrogenase in filamentous cyanobacteria. PhD thesis. Uppsala University, Uppsala, Sweden. ISBN 91-554-5708-8.
  18. Lindberg, P., Hansel, A. & Lindblad, P. ( 2000; ). hupS and hupL constitute a transcription unit in the cyanobacterium Nostoc sp. PCC 73102. Arch Microbiol 174, 129–133.[CrossRef]
    [Google Scholar]
  19. Luque, I., Flores, E. & Herrero, A. ( 1994; ). Molecular mechanism for the operation of nitrogen control in cyanobacteria. EMBO J 13, 2862–2869.
    [Google Scholar]
  20. Maier, R. J. & Triplett, E. W. ( 1996; ). Toward more productive, efficient and competitive nitrogen-fixing symbiotic cyanobacteria. Crit Rev Plant Sci 15, 191–234.[CrossRef]
    [Google Scholar]
  21. Masukawa, H., Mochimaru, M. & Sakurai, H. ( 2002; ). Disruption of the uptake hydrogenase gene, but not of the bi-directional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Appl Microbiol Biotechnol 58, 618–624.[CrossRef]
    [Google Scholar]
  22. Menon, N. K., Robbins, J., Der Vartanian, M., Patil, D., Peck, H. D., Jr, Menon, A. L., Robson, R. L. & Przybyla, A. E. ( 1993; ). Carboxy-terminal processing of the large subunit of [NiFe] hydrogenases. FEBS Lett 331, 91–95.[CrossRef]
    [Google Scholar]
  23. Muro-Pastor, A. M., Valladares, A., Flores, E. & Herrero, A. ( 1999; ). The hetC gene is a direct target of the NtcA transcriptional regulator in cyanobacterial heterocyst development. J Bacteriol 181, 6664–6669.
    [Google Scholar]
  24. Nübel, U., Garcia-Pichel, F. & Muyzer, G. ( 1997; ). PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63, 3327–3332.
    [Google Scholar]
  25. Oxelfelt, F., Tamagnini, P., Salema, R. & Lindblad, P. ( 1995; ). Hydrogen uptake in Nostoc strain PCC 73102: effects of nickel, hydrogen, carbon and nitrogen. Plant Physiol Biochem 33, 617–623.
    [Google Scholar]
  26. Oxelfelt, F., Tamagnini, P. & Lindblad, P. ( 1998; ). Hydrogen uptake in Nostoc sp. strain PCC 73102. Cloning and characterization of a hupSL homologue. Arch Microbiol 169, 267–274.[CrossRef]
    [Google Scholar]
  27. Paschos, A., Bauer, A., Zimmermann, A., Zehelein, E. & Bock, A. ( 2002; ). HypF, a carbamoyl phosphate-converting enzyme involved in [FeNi] hydrogenase maturation. J Biol Chem 277, 49945–49951.[CrossRef]
    [Google Scholar]
  28. Ramasubramanian, T. S., Wei, T.-F. & Golden, J. W. ( 1994; ). Two Anabaena sp. strain PCC 7120 DNA-binding factors interact with vegetative cell- and heterocyst-specific genes. J Bacteriol 176, 1214–1223.
    [Google Scholar]
  29. Rauhut, R. & Klug, G. ( 1999; ). mRNA degradation in bacteria. FEMS Microbiol Rev 23, 353–370.[CrossRef]
    [Google Scholar]
  30. Reade, J. P. H., Dougherty, L. J., Rogers, L. J. & Gallon, J. R. ( 1999; ). Synthesis and proteolytic degradation of nitrogenase in cultures of the unicellular cyanobacterium Gloeothece strain ATCC 27152. Microbiology 145, 1749–1758.[CrossRef]
    [Google Scholar]
  31. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. ( 1979; ). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111, 1–61.[CrossRef]
    [Google Scholar]
  32. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Springer Harbor, NY: Cold Springer Harbor Laboratory.
  33. Sarkar, N. ( 1997; ). Polyadenylation of mRNA in prokaryotes. Annu Rev Biochem 66, 173–197.[CrossRef]
    [Google Scholar]
  34. Schmitz, O., Boison, G., Hilscher, R., Hundeshagen, B., Zimmer, W., Lottspeich, F. & Bothe, H. ( 1995; ). Molecular biological analysis of a bidirectional hydrogenase from cyanobacteria. Eur J Biochem 233, 266–276.[CrossRef]
    [Google Scholar]
  35. Schmitz, O., Boison, G., Salzmann, H., Bothe, H., Schütz, K., Wang, S. H. & Happe, T. ( 2002; ). HoxE – a subunit specific for the pentameric bidirectional hydrogenase complex (HoxEFUYH) of cyanobacteria. Biochim Biophys Acta 1554, 66–74.[CrossRef]
    [Google Scholar]
  36. Schütz, K., Happe, T., Troshina, O., Lindblad, P., Leitão, E., Oliveira, P. & Tamagnini, P. ( 2004; ). Cyanobacterial H2 production – a comparative analysis. Planta 218, 350–359.[CrossRef]
    [Google Scholar]
  37. Sheremetieva, M. E., Troshina, O. Y., Serebryakova, L. T. & Lindblad, P. ( 2002; ). Identification of hox genes and analysis of their transcription in the unicellular cyanobacterium Gloeocapsa alpicola CALU 743 growing under nitrate-limiting conditions. FEMS Microbiol Lett 214, 229–233.[CrossRef]
    [Google Scholar]
  38. Tamagnini, P., Troshina, O., Oxelfelt, F., Salema, R. & Lindblad, P. ( 1997; ). Hydrogenases in Nostoc sp. strain PCC 73102, a strain lacking a bidirectional enzyme. Appl Environ Microbiol 63, 1801–1807.
    [Google Scholar]
  39. Tamagnini, P., Costa, J.-L., Almeida, L., Oliveira, M.-J., Salema, R. & Lindblad, P. ( 2000; ). Diversity of cyanobacterial hydrogenases, a molecular approach. Curr Microbiol 40, 356–361.[CrossRef]
    [Google Scholar]
  40. Tamagnini, P., Axelsson, R., Lindberg, P., Oxelfelt, F., Wünschiers, R. & Lindblad, P. ( 2002; ). Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66, 1–20.[CrossRef]
    [Google Scholar]
  41. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  42. Vignais, P. M. & Toussaint, B. ( 1994; ). Molecular biology of membrane-bound H2 uptake hydrogenases. Arch Microbiol 161, 1–10.
    [Google Scholar]
  43. Vignais, P. M., Billoud, B. & Meyer, J. ( 2001; ). Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25, 455–501.[CrossRef]
    [Google Scholar]
  44. Wagner, R. ( 2000; ). Transcription Regulation in Prokaryotes. Oxford, UK: Oxford University Press.
  45. Whitton, B. A. & Potts, M. ( 2000; ). Introduction to the cyanobacteria. In The Ecology of Cyanobacteria, pp. 1–11. Edited by B. A. Whitton & M. Potts. Dordrecht, The Netherlands: Kluwer Academic.
  46. Wisén, S. ( 2003; ). Characterization of the DNA-binding properties of the Cyanobacterial transcription factor NtcA. PhD thesis. Uppsala University, Uppsala, Sweden. ISBN 91-554-5706-1.
  47. Wolk, C. P., Ernest, A. & Elhai, J. ( 1994; ). Heterocyst metabolism and development. In The Molecular Biology of Cyanobacteria, pp. 769–823. Edited by D. A. Bryant. Dordrecht, The Netherlands: Kluwer Academic.
  48. Wünschiers, R., Batur, M. & Lindblad, P. ( 2003; ). Presence and expression of hydrogenase specific C-terminal endopeptidases in cyanobacteria. BMC Microbiol 3, 8.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27248-0
Loading
/content/journal/micro/10.1099/mic.0.27248-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error