Hypermutable with mutations in are found in cystic fibrosis sputum Free

Abstract

Hypermutable bacterial pathogens exist at surprisingly high prevalence and benefit bacterial populations by promoting adaptation to selective environments, including resistance to antibiotics. Five hundred isolates were screened for an increased frequency of mutation to resistance to rifampicin, nalidixic acid and spectinomycin: of the 14 hypermutable isolates identified, 12 were isolated from cystic fibrosis (CF) sputum. Analysis by enterobacterial repetitive intergenic consensus (ERIC)-PCR and ribotyping identified eight distinct genetic fingerprints. The hypermutable phenotype of seven of the eight unique isolates was associated with polymorphisms in conserved sites of . Four of the mutant alleles were cloned and failed to complement the mutator phenotype of a  : : TSTE mutant of strain Rd KW20. Antibiotic susceptibility testing of the hypermutators identified one -lactamase-negative ampicillin-resistant (BLNAR) isolate with two isolates producing -lactamase. Six isolates from the same patient with CF, with the same genetic fingerprint, were clonal by multilocus sequence typing (MLST). In this clone, there was an evolution to higher MIC values for the antibiotics administered to the patient during the period in which the strains were isolated. Hypermutable with mutations in are prevalent, particularly in the CF lung environment, and may be selected for and maintained by antibiotic pressure.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27230-0
2004-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/9/mic1502947.html?itemId=/content/journal/micro/10.1099/mic.0.27230-0&mimeType=html&fmt=ahah

References

  1. Bayliss C. D., van de Ven T., Moxon E. R. 2002; Mutations in polI but not mutSLH destabilize Haemophilus influenzae tetranucleotide repeats. EMBO 21:1465–1476 [CrossRef]
    [Google Scholar]
  2. Bayliss C. D., Sweetman W. A., Moxon E. R. 2004; Mutations in Haemophilus influenzae mismatch repair genes increase mutation rates of dinucleotide repeat tracts but not dinucleotide repeat-driven pilin phase variation rates. J Bacteriol 186:2928–2935 [CrossRef]
    [Google Scholar]
  3. Blattner F. R., Plunkett G., Bloch C. A. 3rd 14 other authors 1997; The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474 [CrossRef]
    [Google Scholar]
  4. Brown E. W., LeClerc J. E., Li B., Payne W. L., Cebula T. A. 2001; Phylogenetic evidence for horizontal transfer of mutS alleles among naturally occurring Escherichia coli strains. J Bacteriol 183:1631–1644 [CrossRef]
    [Google Scholar]
  5. Bucci C., Lavitola A., Salvatore P., Del Giudice L., Massardo D. R., Bruni C. B., Alifano P. 1999; Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Mol Cell 3:435–445 [CrossRef]
    [Google Scholar]
  6. Carmeli Y., Troillet N., Karchmer A. W., Samore M. H. 1999; Health and economic outcomes of antibiotic resistance in Pseudomonas aeruginosa. Arch Intern Med 159:1127–1132 [CrossRef]
    [Google Scholar]
  7. Chao L., Cox E. C. 1983; Competition between high and low mutating strains of Escherichia coli. Evolution 37:125–134 [CrossRef]
    [Google Scholar]
  8. Cox E. C. 1976; Bacterial mutator genes and the control of spontaneous mutation. Annu Rev Genet 10:135–156 [CrossRef]
    [Google Scholar]
  9. Dawson K. J. 1999; The dynamics of infinitesimally rare alleles, applied to the evolution of mutation rates and the expression of deleterious mutations. Theor Popul Biol 55:1–22 [CrossRef]
    [Google Scholar]
  10. Denamur E., Lecointre G., Darlu P. 9 other authors 2000; Evolutionary implications of the frequent horizontal transfer of mismatch repair genes. Cell 103:711–721 [CrossRef]
    [Google Scholar]
  11. Denamur E., Bonacorsi S., Giraud A. 8 other authors 2002; High frequency of mutator strains among human uropathogenic Escherichia coli isolates. J Bacteriol 184:605–609 [CrossRef]
    [Google Scholar]
  12. Doern G. V., Brueggemann A. B., Pierce G., Holley H. P. Jr, Rauch A. 1997; Antibiotic resistance among clinical isolates of Haemophilus influenzae in the United States in 1994 and 1995 and detection of beta-lactamase-positive strains resistant to amoxicillin-clavulanate: results of a national multicenter surveillance study. Antimicrob Agents Chemother 41:292–297
    [Google Scholar]
  13. Drake J. W. 1991; A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A 88:7160–7164 [CrossRef]
    [Google Scholar]
  14. Falla T. J., Crook D. W., Brophy L. N., Maskell D., Kroll J. S., Moxon E. R. 1994; PCR for capsular typing of Haemophilus influenzae. J Clin Microbiol 32:2382–2386
    [Google Scholar]
  15. Fleischmann R. D., Adams M. D., White O. 37 other authors 1995; Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512 [CrossRef]
    [Google Scholar]
  16. Foxwell A. R., Kyd J. M., Cripps A. W. 1998; Nontypeable Haemophilus influenzae: pathogenesis and prevention. Microb Mol Biol Rev 62:294–308
    [Google Scholar]
  17. Giraud A., Matic I., Radman M., Fons M., Taddei F. 2002; Mutator bacteria as a risk factor in treatment of infectious diseases. Antimicrob Agents Chemother 46:863–865 [CrossRef]
    [Google Scholar]
  18. Glickman B. W., Radman M. 1980; Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc Natl Acad Sci U S A 77:1063–1067 [CrossRef]
    [Google Scholar]
  19. Gomez-De-Leon P., Santos J. I., Caballero J., Gomez D., Espinosa L. E., Moreno I., Pinero D., Cravioto A. 2000; Genomic variability of Haemophilus influenzae isolated from Mexican children determined by using enterobacterial repetitive intergenic consensus sequences and PCR. J Clin Microbiol 38:2504–2511
    [Google Scholar]
  20. Ishii K., Matsuda H., Iwasa Y., Sasaki A. 1989; Evolutionarily stable mutation rate in a periodically changing environment. Genetics 121:163–174
    [Google Scholar]
  21. LeClerc J. E., Li B., Payne W. L., Cebula T. A. 1996; High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:1208–1211 [CrossRef]
    [Google Scholar]
  22. Leigh E. G. 1970; Natural selection and mutability. Am Nat 104:301–305 [CrossRef]
    [Google Scholar]
  23. Li B., Tsui H. C., LeClerc J. E., Dey M., Winkler M. E., Cebula T. A. 2003; Molecular analysis of mutS expression and mutation in natural isolates of pathogenic Escherichia coli. Microbiology 149:1323–1331 [CrossRef]
    [Google Scholar]
  24. Low A. S., MacKenzie F. M., Gould I. M., Booth I. R. 2001; Protected environments allow parallel evolution of a bacterial pathogen in a patient subjected to long-term antibiotic therapy. Mol Microbiol 42:619–630
    [Google Scholar]
  25. Luria S., Delbruck M. 1943; Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491
    [Google Scholar]
  26. Maiden M. C., Bygraves J. A., Feil E. 10 other authors 1998; Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–3145 [CrossRef]
    [Google Scholar]
  27. Martin K., Morlin G., Smith A., Nordyke A., Eisenstark A., Golomb M. 1998; The tryptophanase gene cluster of Haemophilus influenzae type b: evidence for horizontal gene transfer. J Bacteriol 180:107–118
    [Google Scholar]
  28. Martinez E., Bartolome B, de la Cruz F. 1988; pACYC184-derived cloning vectors containing the multiple cloning site and lacZ alpha reporter gene of pUC8/9 and pUC18/19 plasmids. Gene 68:159–162 [CrossRef]
    [Google Scholar]
  29. Matic I., Rayssiguier C., Radman M. 1995; Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell 80:507–515 [CrossRef]
    [Google Scholar]
  30. Matic I., Radman M., Taddei F., Picard B., Doit C., Bingen E., Denamur E., Elion J. 1997; Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 277:1833–1834 [CrossRef]
    [Google Scholar]
  31. Meats E., Feil E. J., Stringer S., Cody A. J., Goldstein R., Kroll J. S., Popovic T., Spratt B. G. 2003; Characterization of encapsulated and noncapsulated Haemophilus influenzae and determination of phylogenetic relationships by multilocus sequence typing. J Clin Microbiol 41:1623–1636 [CrossRef]
    [Google Scholar]
  32. Medeiros A. A., Levesque R., Jacoby G. A. 1986; An animal source for the ROB-1 beta-lactamase of Haemophilus influenzae type b. Antimicrob Agents Chemother 29:212–215 [CrossRef]
    [Google Scholar]
  33. Mendelman P. M., Roberts M. C., Smith A. L. 1982; Mutation frequency of Haemophilus influenzae to rifampin resistance. Antimicrob Agents Chemother 22:531–533 [CrossRef]
    [Google Scholar]
  34. Mendelman P. M., Chaffin D. O., Stull T. L., Rubens C. E., Mack K. D., Smith A. L. 1984; Characterization of non-beta-lactamase-mediated ampicillin resistance in Haemophilus influenzae. Antimicrob Agents Chemother 26:235–244 [CrossRef]
    [Google Scholar]
  35. Mendelman P. M., Chaffin D. O., Kalaitzoglou G. 1990a; Penicillin-binding proteins and ampicillin resistance in Haemophilus influenzae. J Antimicrob Chemother 25:525–534 [CrossRef]
    [Google Scholar]
  36. Mendelman P. M., Chaffin D. O., Krilov L. R., Kalaitzoglou G., Serfass D. A., Onay O., Wiley E. A., Overturf G. D., Rubin L. G. 1990b; Cefuroxime treatment failure of nontypable Haemophilus influenzae meningitis associated with alteration of penicillin-binding proteins. J Infect Dis 162:1118–1123 [CrossRef]
    [Google Scholar]
  37. Mitchell M. A., Skowronek K., Kauc L., Goodgal S. H. 1991; Electroporation of Haemophilus influenzae is effective for transformation of plasmid but not chromosomal DNA. Nucleic Acids Res 19:3625–3628 [CrossRef]
    [Google Scholar]
  38. Modrich P., Lahue R. 1996; Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 65:101–133 [CrossRef]
    [Google Scholar]
  39. Moxon E. R., Rainey P. B., Nowak M. A., Lenski R. E. 1994; Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol 4:24–33 [CrossRef]
    [Google Scholar]
  40. NCCLS 2001 Performance Standards for Antimicrobial Susceptibility Testing. Approved standard M100-S11 Wayne, PA: National Committee for Clinical Laboratory Standards;
    [Google Scholar]
  41. Oliver A., Canton R., Campo P., Baquero F., Blazquez J. 2000; High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1254 [CrossRef]
    [Google Scholar]
  42. Oliver A., Baquero F., Blazquez J. 2002; The mismatch repair system (mutS,mutL and uvrD genes) in Pseudomonas aeruginosa: molecular characterization of naturally occurring mutants. Mol Microbiol 43:1641–1650 [CrossRef]
    [Google Scholar]
  43. Pennington J. E. 1981; Penetration of antibiotics into respiratory secretions. Rev Infect Dis 3:67–73 [CrossRef]
    [Google Scholar]
  44. Pettigrew M. M., Foxman B., Ecevit Z., Marrs C. F., Gilsdorf J. 2002; Use of pulsed-field gel electrophoresis, enterobacterial repetitive intergenic consensus typing, and automated ribotyping to assess genomic variability among strains of nontypeable Haemophilus influenzae. J Clin Microbiol 40:660–662 [CrossRef]
    [Google Scholar]
  45. Powell M., Williams J. D. 1988; In-vitro activity of cefaclor, cephalexin and ampicillin against 2458 clinical isolates of Haemophilus influenzae. J Antimicrob Chemother 21:27–31 [CrossRef]
    [Google Scholar]
  46. Prunier A. L., Malbruny B., Laurans M., Brouard J., Duhamel J. F., Leclercq R. 2003; High rate of macrolide resistance in Staphylococcus aureus strains from patients with cystic fibrosis reveals high proportions of hypermutable strains. J Infect Dis 187:1709–1716 [CrossRef]
    [Google Scholar]
  47. Rayssiguier C., Thaler D. S., Radman M. 1989; The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342:396–401 [CrossRef]
    [Google Scholar]
  48. Richardson A. R., Yu Z., Popovic T., Stojiljkovic I. 2002; Mutator clones of Neisseria meningitidis in epidemic serogroup A disease. Proc Natl Acad Sci U S A 99:6103–6107 [CrossRef]
    [Google Scholar]
  49. Schaaper R. M., Dunn R. L. 1987; Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc Natl Acad Sci U S A 84:6220–6224 [CrossRef]
    [Google Scholar]
  50. Sharma A., Kaur R., Ganguly N. K., Singh P. D., Chakraborti A. 2002; Subtype distribution of Haemophilus influenzae isolates from north India. J Med Microbiol 51:399–404
    [Google Scholar]
  51. Sniegowski P. D., Gerrish P. J., Lenski R. E. 1997; Evolution of high mutation rates in experimental populations of E. coli. Nature 387:703–705 [CrossRef]
    [Google Scholar]
  52. Steers E. E., Foltz L., Graves B. S., Riden J. 1959; An inocula replicating apparatus for routine testing of bacterial susceptibility of antibiotics. Antibiot Chemother 9:307–311
    [Google Scholar]
  53. Strauss B. S. 1999; Frameshift mutation, microsatellites and mismatch repair. Mutat Res 437:195–203 [CrossRef]
    [Google Scholar]
  54. Syriopoulou V. P., Scheifele D. W., Sack C. M., Smith A. L. 1979; Effect of inoculum size on the susceptibility of Haemophilus influenzae b to beta-lactam antibiotics. Antimicrob Agents Chemother 16:510–513 [CrossRef]
    [Google Scholar]
  55. Tachiki H., Kato R., Masui R., Hasegawa K., Itakura H., Fukuyama K., Kuramitsu S. 1998; Domain organization and functional analysis of Thermus thermophilus MutS protein. Nucleic Acids Res 26:4153–4159 [CrossRef]
    [Google Scholar]
  56. Taddei F., Radman M., Maynard-Smith J., Toupance B., Gouyon P. H., Godelle B. 1997a; Role of mutator alleles in adaptive evolution. Nature 19:700–702
    [Google Scholar]
  57. Taddei F., Vulic M., Radman M., Matic I. 1997b; Genetic variability and adaptation to stress. In Environmental Stress, Adaptation, and Evolution pp. 271–290 Edited by Bijlsma R., Loeschcke V. Basel, Switzerland: Birkhauser;
    [Google Scholar]
  58. Tang C. M., Hood D. W., Moxon E. R. 2001; Pathogenesis of Haemophilus influenzae Infections. In Principles of Bacterial Pathogenesis pp. 675–716 Edited by Groisman E. A. St Louis, MO: Academic Press;
    [Google Scholar]
  59. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  60. van Belkum A., Duim B., Regelink A., Moller L., Quint W., van Alphen L. 1994; Genomic DNA fingerprinting of clinical Haemophilus influenzae isolates by polymerase chain reaction amplification: comparison with major outer-membrane protein and restriction fragment length polymorphism analysis. J Med Microbiol 41:63–68 [CrossRef]
    [Google Scholar]
  61. Vega R., Sadoff H. L., Patterson M. J. 1976; Mechanisms of ampicillin resistance in Haemophilus influenzae type B. Antimicrob Agents Chemother 9:164–168 [CrossRef]
    [Google Scholar]
  62. Watson M. E., Jarisch J., Smith A. L Jr. 2004; Inactivation of deoxyadenosine methyltransferase (dam) attenuates Haemophilus influenzae virulence. Mol Microbiol 53:651–664 [CrossRef]
    [Google Scholar]
  63. Wilcox K., Smith H. 1975; Isolation and characterization of mutants of Haemophilus influenzae deficient in an adenosine 5′-triphosphate-dependent deoxyribonuclease activity. J Bacteriol 122:443–453
    [Google Scholar]
  64. Wu T. H., Marinus M. G. 1994; Dominant negative mutator mutations in the mutS gene of Escherichia coli. J Bacteriol 176:5393–5400
    [Google Scholar]
  65. Wu T. H., Marinus M. G. 1999; Deletion mutation analysis of the mutS gene inEscherichia coli. J Biol Chem 274:5948–5952 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27230-0
Loading
/content/journal/micro/10.1099/mic.0.27230-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed