Expression of bacteriophage Ea1h lysozyme in and its activity in growth inhibition of Free

Abstract

A 3·3 kb fragment from phage Ea1h in plasmid pJH94 was previously characterized and found to contain an exopolysaccharide depolymerase () gene and two additional ORFs encoding 178 and 119 amino acids. ORF178 () and ORF119 () were found to overlap by 19 bp and they resembled genes encoding lysozymes and holins. In nucleotide sequence alignments, had structurally conserved regions with residues important for lysozyme function. The gene was cloned into an expression vector and expressed in . Active lysozyme was detected only when cells with the gene and a kanamycin-resistance cassette were grown in the presence of kanamycin. Growth of was inhibited after addition of enzyme exceeding a threshold for lysozyme to target cells. When immature pears were soaked in lysates of induced cells, symptoms such as ooze formation and necrosis were retarded or inhibited after inoculation with .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27224-0
2004-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/8/mic1502707.html?itemId=/content/journal/micro/10.1099/mic.0.27224-0&mimeType=html&fmt=ahah

References

  1. Benjamin R. C., Fitzmaurice W. P., Huang P. C., Scocca J. J. 1984; Nucleotide sequence of cloned DNA segments of the Haemophilus influenzae bacteriophage HP1c1. Gene 31:173–185 [CrossRef]
    [Google Scholar]
  2. Bernhard F., Coplin D. L., Geider K. 1993; A gene cluster for amylovoran synthesis in Erwinia amylovora: characterization and relationship to cps genes in Erwinia stewartii. Mol Gen Genet 239:158–168
    [Google Scholar]
  3. Billing E. 1960; An association between capsulation and phage sensitivity in Erwinia amylovora. Nature 186:819–820 [CrossRef]
    [Google Scholar]
  4. Boman H. G., Hultmark D. 1987; Cell-free immunity in insects. Annu Rev Microbiol 41:103–126 [CrossRef]
    [Google Scholar]
  5. Bonn W. G., van der Zwet T. 2000; Distribution and economic importance of fire blight. In Fire Blight: the Disease and its Causative Agent Erwinia amylovora pp 37–53 Edited by Vanneste J. L. Wallingford, UK & New York: CABI Publishing;
    [Google Scholar]
  6. Cooper G. M. 1997 The Cell: a Molecular Approach Washington, DC: American Society for Microbiology;
  7. Ditta G., Schmidhauser T., Yakobson E., Lu P., Liang X. W., Finlay D. R., Guiney D., Helsinki D. R. 1985; Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene-expression. Plasmid 13:149–153 [CrossRef]
    [Google Scholar]
  8. Düring K., Porsch P., Fladung M., Lörz H. 1993; Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. Plant J 3:587–598 [CrossRef]
    [Google Scholar]
  9. Düring K., Porsch P., Mahn A., Brinkmann O., Gieffers W. 1999; The non-enzymatic microbicidal activity of lysozymes. FEBS Lett 449:93–100 [CrossRef]
    [Google Scholar]
  10. Engström P., Carlsson A., Bennich H, Engström A., Zao Z. J. 1984; The antibacterial effect of attacins from the silk moth Hyalophora cecropia is directed against the outer membrane of Escherichia coli. EMBO J 3:3347–3351
    [Google Scholar]
  11. Erskine J. M. 1973; Characteristics of Erwinia amylovora bacteriophage and its possible role in the epidemology of fire blight. Can J Microbiol 19:837–845 [CrossRef]
    [Google Scholar]
  12. Esposito D., Fitzmaurice W. P., Benjamin R. C., Goodman S. D., Waldman A. S., Scocca J. J. 1996; The complete nucleotide sequence of bacteriophage HP1 DNA. Nucleic Acids Res 24:2360–2368 [CrossRef]
    [Google Scholar]
  13. Falkenstein H., Bellemann P., Walter S., Zeller W., Geider K. 1988; Identification of Erwinia amylovora, the fire blight pathogen, by colony hybridization with DNA from plasmid pEA29. Appl Environ Microbiol 54:2798–2802
    [Google Scholar]
  14. Fernández-Sousa J. M., Gavilanes J. G., Municio A. M., Rodriguez R. 1977; On the inhibition of hen egg-white lysozyme activity by aminoglycosidic antibiotics. Biochem Biophys Res Commun 75:895–900 [CrossRef]
    [Google Scholar]
  15. Geider K., Baldes R., Bellemann P., Metzger M., Schwartz T. 1995; Mutual adaptation of bacteriophage fd, pfd plasmids and their host strains. Microbiol Res 150:337–346 [CrossRef]
    [Google Scholar]
  16. Hanke V., Norelli J. L., Aldwinckle H. S., Düring K. 1998; Transformation of apple cultivars with T4-lysozyme gene to increase fire blight resistance. Acta Hortic 489:253–256
    [Google Scholar]
  17. Hanke V., Geider K., Richter K. 2003; Transgenic apple plants expressing viral EPS-depolymerase: evaluation of resistance to the phytopathogenic bacterium Erwinia amylovora. In Plant Biotech 2002 and Beyond pp 153–157 Edited by Vasil I. K. Dordrecht: Kluwer;
    [Google Scholar]
  18. Hartung J. S., Fulbright D. W., Klos E. J. 1988; Cloning of a bacteriophage polysaccharide depolymerase gene and its expression in Erwinia amylovora. Mol Plant–Microbe Interact 1:87–93 [CrossRef]
    [Google Scholar]
  19. Hildebrand M., Dickler E., Geider K. 2000; Occurrence of Erwinia amylovora on insects in a fire blight orchard. J Phytopathol 148:251–256 [CrossRef]
    [Google Scholar]
  20. Jabrane A., Sabri A., Vandenberghe I., Van Beeumen J., Thonart P, Compère P., Jacques P. 2002; Characterization of Serracin P, a phage-tail-like bacteriocin, and its activity against Erwinia amylovora, the fire blight pathogen. Appl Environ Microbiol 68:5704–5710 [CrossRef]
    [Google Scholar]
  21. Jock S., Geider K. 2004; Molecular differentiation of Erwinia amylovora strains from North America and of two Asian pear pathogens by analyses of PFGE patterns and hrpN genes. Environm Microbiol 6:480–490 [CrossRef]
    [Google Scholar]
  22. Jolles P., Jolles J. 1984; What's new in lysozyme research? Always a model system, today as yesterday. Mol Cell Biochem 63:165–189
    [Google Scholar]
  23. Kim W.-S., Geider K. 2000; Characterization of a viral EPS-depolymerase, a potential tool for control of fire blight. Phytopathology 90:1263–1268 [CrossRef]
    [Google Scholar]
  24. Ko K., Norelli J. L., Brown S. K., Borejsza-Wysocka S. K., Aldwinckle H. S, Düring K. 1999; Effects of multiple transgenes on resistance to fire blight of ‘Galaxy’ apple. Acta Horticult 489:257–257
    [Google Scholar]
  25. Ko K., Norelli J. L., Reynord J.-P., Aldwinckle H. S., Brown S. K. 2002; T4 lysozyme and attacin genes enhance resistance of transgenic ‘Galaxy’ apple against Erwinia amylovora. J Am Soc Hortic Sci 127:515–519
    [Google Scholar]
  26. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  27. Mourgues F., Brisset M. N., Chevreau E. 1998; Strategies to improve plant resistance to bacterial diseases through genetic engineering. Trends Biotechnol 16:203–210 [CrossRef]
    [Google Scholar]
  28. Okabe N., Goto M. 1963; Bacteriophage of plant pathogens. Annu Rev Phytopathol 1:397–418 [CrossRef]
    [Google Scholar]
  29. Pellegrini A., Thomas U., Wild P., Schraner E., von Fellenberg R. 2000; Effect of lysozyme or modified fragments on DNA and RNA synthesis and membrane permeability of Escherichia coli. Microbiol Res 155:69–77 [CrossRef]
    [Google Scholar]
  30. Pontarollo R. A., Rioux C. R., Potter A. A. 1997; Cloning and characterization of bacteriophage-like DNA from Haemophilus somnus homologous to phages P2 and HP1. J Bacteriol 179:1872–1879
    [Google Scholar]
  31. Psallidas P. G., Tsiantos J. 2000; Chemical control of fire blight. In Fire Blight, the Disease and its Causative Agent, Erwinia amylovora pp 199–234 Edited by Vanneste J. L. Wallingford, UK & New York: CABI Publishing;
    [Google Scholar]
  32. Rennell D., Poteete A. R. 1985; Phage P22 lysis genes: nucleotide sequences and functional relationships with T4 and lambda genes. Virology 143:280–289 [CrossRef]
    [Google Scholar]
  33. Reynoird J. P., Mourgues F., Norelli J., Aldwinckle H. S., Brisset M. N., Chevreau E. 1999; First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyalophora cecropia. Plant Science 149:23–31 [CrossRef]
    [Google Scholar]
  34. Ritchie D. F., Klos E. J. 1977; Isolation of Erwinia amylovora bacteriophage from aerial parts of apple trees. Phytopathology 67:101–104
    [Google Scholar]
  35. Saedi M. S., Garvey K. J., Ito J. 1987; Cloning and purification of a unique lysozyme produced by Bacillus phage ϕ29. Proc Natl Acad Sci U S A 84:955–958 [CrossRef]
    [Google Scholar]
  36. Schmidt C., Velleman M., Arber W. 1996; Three functions of bacteriophage P1 involved in cell lysis. J Bacteriol 178:1099–1104
    [Google Scholar]
  37. Schnabel E. L., Jones A. L. 2001; Isolation and characterization of five Erwinia amylovora bacteriophages and assessment of phage resistance in strains ofErwinia amylovora. Appl Environ Microbiol 67:59–64 [CrossRef]
    [Google Scholar]
  38. Van de Guchte M., van der Wal F. J., Venema G. 1992; Lysozyme expression in Lactococcus lactis. Appl Microbiol Biotechnol 37:216–224 [CrossRef]
    [Google Scholar]
  39. Vandenbergh P. A., Cole R. L. 1986; Cloning and expression in Escherichia coli of the polysaccharide depolymerase associated with bacteriophage-infectedErwinia amylovora. Appl Environ Microbiol 51:862–864
    [Google Scholar]
  40. Vandenbergh P. A., Wright A. M., Vidaver A. K. 1985; Partial purification and characterization of a polysaccharide depolymerase associated with phage-infected Erwinia amylovora. Appl Environ Microbiol 49:994–996
    [Google Scholar]
  41. Van der Wilk F., Dullemans A. M., Verbeek M., van den Heuvel J. F. 1999; Isolation and characterization of APSE-1, a bacteriophage infecting the secondary endosymbiont of Acyrthosiphon pisum. Virology 262:104–113 [CrossRef]
    [Google Scholar]
  42. Wang S.-L., Chag W.-T. 1997; Purification and characterization of two bifunctional chitinases/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. Appl Environ Microbiol 63:380–386
    [Google Scholar]
  43. Weaver L. H., Rennell D., Poteete A. R., Mathews B. W. 1985; Structure of phage P22 gene 19 lysozyme inferred from its homology with phage T4 lysozyme. Implications for lysozyme evolution. J Mol Biol 184:739–741 [CrossRef]
    [Google Scholar]
  44. Young R. 1992; Bacteriophage lysis: mechanism and regulation. Microbiol Rev 56:430–481
    [Google Scholar]
  45. Zhang Z. Y., Coyne D. P., Vidaver A. K., Mitra A. 1998; Expression of human lactoferrin cDNA confers resistance to Ralstonia solanacearum in transgenic tobacco plants. Phytopathology 88:730–734 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27224-0
Loading
/content/journal/micro/10.1099/mic.0.27224-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed