1887

Abstract

The prodigiosin biosynthesis gene cluster ( cluster) from two strains of ( ATCC 274 and sp. ATCC 39006) has been cloned, sequenced and expressed in heterologous hosts. Sequence analysis of the respective clusters revealed 14 ORFs in ATCC 274 and 15 ORFs in sp. ATCC 39006. In each species, predicted gene products showed similarity to polyketide synthases (PKSs), non-ribosomal peptide synthases (NRPSs) and the Red proteins of A3(2). Comparisons between the two clusters and the cluster from A3(2) revealed some important differences. A modified scheme for the biosynthesis of prodigiosin, based on the pathway recently suggested for the synthesis of undecylprodigiosin, is proposed. The distribution of the cluster within several sp. isolates is demonstrated and the presence of cryptic clusters in some strains shown. The cluster of ATCC 274 is flanked by and homologues and this configuration is demonstrated in several strains, whilst these genes are contiguous in strains lacking the cluster.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27222-0
2004-11-01
2020-04-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503547.html?itemId=/content/journal/micro/10.1099/mic.0.27222-0&mimeType=html&fmt=ahah

References

  1. Alexeev D., Alexeeva M., Baxter R. L., Campopiano D. J., Webster S. P., Sawyer L. 1998; The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme. J Mol Biol284:401–419[CrossRef]
    [Google Scholar]
  2. Amábile-Cuevas C. F., Demple B. 1991; Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon. Nucleic Acids Res19:4479–4484[CrossRef]
    [Google Scholar]
  3. Aucken H. M., Pitt T. L. 1998; Antibiotic resistance and putative virulence factors of Serratia marcescens with respect to O and K serotypes. J Med Microbiol47:1105–1113[CrossRef]
    [Google Scholar]
  4. Blazevic D. J. 1970; The Genus Serratia Boca, Raton, FL: CRC Press Inc;
    [Google Scholar]
  5. Braun V., Schmitz G. 1980; Excretion of a protease by Serratia marcescens. Arch Microbiol124:55–61[CrossRef]
    [Google Scholar]
  6. Brocklehurst K. R., Hobman J. L., Lawley B., Blank L., Marshall S. J., Brown N. L., Morby A. P. 1999; ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol Microbiol31:893–902[CrossRef]
    [Google Scholar]
  7. Bycroft B. W., Maslen C., Box S. J., Brown A., Tyler J. W. 1987; The isolation and characterisation of (3R,5R)- and (3S,5R)-carbapenem-3-carboxylic acid from Serratia and Erwinia species and their putative biosynthetic role. J Chem Soc Chem Commun21:1623–1625
    [Google Scholar]
  8. Cámpas C., Dalmau M., Montaner B., Barragan M., Bellosillo B., Colomer D., Pons G., Perez-Tomas R., Gil J. 2003; Prodigiosin induces apoptosis of B and T cells from B-cell chronic lymphocytic leukemia. Leukemia17:746–750[CrossRef]
    [Google Scholar]
  9. Carbonell G. V., Della Colleta H. H., Yano T., Darini A. L., Levy C. E., Fonseca B. A. 2000; Clinical relevance and virulence factors of pigmented Serratia marcescens. FEMS Immunol Med Microbiol28:143–149[CrossRef]
    [Google Scholar]
  10. Cerdeño A. M., Bibb M. J., Challis G. L. 2001; Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): new mechanisms for chain initiation and termination in modular multienzymes. Chem Biol8:817–829[CrossRef]
    [Google Scholar]
  11. Changela A., Chen K., Xue Y., Holschen J., Outten C. E., O'Halloran T. V., Mondragon A. 2003; Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science301:1383–1387[CrossRef]
    [Google Scholar]
  12. Chiu M. L., Folcher M., Katoh T., Puglia A. M., Vohradsky J., Yun B. S., Seto H., Thompson C. J. 1999; Broad spectrum thiopeptide recognition specificity of the Streptomyces lividans TipAL protein and its role in regulating gene expression. J Biol Chem274:20578–20586[CrossRef]
    [Google Scholar]
  13. Clegg S., Allen B. L. 1985; Molecular cloning and expression of an extracellular nuclease of Serratia marcescens in Escherchia coli. FEMS Microbiol Lett27:257–262[CrossRef]
    [Google Scholar]
  14. Coco E. A., Narva K. E., Feitelson J. S. 1991; New classes of Streptomyces coelicolor A3(2) mutants blocked in undecylprodigiosin (Red) biosynthesis. Mol Gen Genet227:28–32[CrossRef]
    [Google Scholar]
  15. Cooksey R. C., Thorne G. M., Farrar W. E. Jr. 1976; R factor-mediated antibiotic resistance in Serratia marcescens. Antimicrob Agents Chemother10:123–127[CrossRef]
    [Google Scholar]
  16. Coulthurst S. J., Kurz C. L., Salmond G. P. C. 2004; luxS mutants of Serratia defective in autoinducer-2-dependant ‘quorum sensing’ show strain-dependent impacts on virulence, carbapenem and prodigiosin production. Microbiology150:1901–1910[CrossRef]
    [Google Scholar]
  17. Crow M. A. 2001; The genetic regulation of pigment and antibiotic biosynthesis in Serratia sp. PhD thesis: University of Cambridge;
    [Google Scholar]
  18. D'Alessio R., Bargiotti A., Carlini O.. 10 other authors 2000; Synthesis and immunosuppressive activity of novel prodigiosin derivatives. J Med Chem43:2557–2565[CrossRef]
    [Google Scholar]
  19. Dauenhauer S. A., Hull R. A., Williams R. P. 1984; Cloning and expression in Escherichia coli of Serratia marcescens genes encoding prodigiosin biosynthesis. J Bacteriol158:1128–1132
    [Google Scholar]
  20. Delcher A. L., Harmon D., Kasif S., White O., Salzberg S. L. 1999; Improved microbial gene identification with GLIMMER. Nucleic Acids Res27:4636–4641[CrossRef]
    [Google Scholar]
  21. Demain A. L. 1995; Why do microorganisms produce antimicrobials?. In Fifty Years of Antimicrobials: Past Perspectives and Future Trends (Society for General Microbiology Symposium no 53 pp205–228 Edited by Hunter P. A., Darby G. K., Russell N. J.. Cambridge: Cambridge University Press;
    [Google Scholar]
  22. Ding M. J., Williams R. P. 1983; Biosynthesis of prodigiosin by white strains of Serratia marcescens isolated from patients. J Clin Microbiol17:476–480
    [Google Scholar]
  23. Feitelson J. S., Malpartida F., Hopwood D. A. 1985; Genetic and biochemical characterization of the red gene cluster of Streptomyces coelicolor A3(2). J Gen Microbiol131:2431–2441
    [Google Scholar]
  24. Flyg C., Kenne K., Boman H. G. 1980; Insect pathogenic properties of Serratia marcescens: phage-resistant mutants with a decreased resistance to Cecropia immunity and a decreased virulence toDrosophila. J Gen Microbiol120:173–181
    [Google Scholar]
  25. Grimont P. A. D., Grimont F. 1978; The genus Serratia. Annu Rev Microbiol32:221–248[CrossRef]
    [Google Scholar]
  26. Grimont P. A. D., Grimont F. 1984; Genus VIII Serratia. In Bergey's Manual of Systematic Bacteriology vol 1 pp477–484 Edited by Kreig N. R., Holt J. G.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  27. Harris A. K. P. 2003; Analysis of quorum sensing and prodigiosin biosynthetic genes in Serratia marcescens PhD thesis: University of Cambridge;
    [Google Scholar]
  28. Herzberg O., Chen C. C., Kapadia G., McGuire M., Carroll L. J., Noh S. J., Dunaway-Mariano D. 1996; Swiveling-domain mechanism for enzymatic phosphotransfer between remote reaction sites. Proc Natl Acad Sci U S A93:2652–2657[CrossRef]
    [Google Scholar]
  29. Hines D. A., Saurugger P. N., Ihler G. M., Benedik M. J. 1988; Genetic analysis of extracellular proteins of Serratia marcescens.. J Bacteriol170:4141–4146
    [Google Scholar]
  30. Holland S., Dale J. W. 1978; The effect of resistance plasmids on pigmentation of Serratia marcescens. Microbios Lett9:85–89
    [Google Scholar]
  31. Horng Y. T., Deng S. C., Daykin M.. 7 other authors 2002; The LuxR family protein SpnR functions as a negative regulator of N-acylhomoserine lactone-dependent quorum sensing in Serratia marcescens. Mol Microbiol45:1655–1671[CrossRef]
    [Google Scholar]
  32. Lambalot R. H., Gehring A. M., Flugel R. S., Zuber P., LaCelle M., Marahiel M. A., Reid R., Khosla C., Walsh C. T. 1996; A new enzyme superfamily – the phosphopantetheinyl transferases. Chem Biol3:923–936[CrossRef]
    [Google Scholar]
  33. Lewis T. A., Cortese M. S., Sebat J. L., Green T. L., Lee C. H., Crawford R. L. 2000; A Pseudomonas stutzeri gene cluster encoding the biosynthesis of the CCl4-dechlorination agent pyridine-2,6-bis(thiocarboxylic acid. Environ Microbiol2:407–416[CrossRef]
    [Google Scholar]
  34. Matsuyama T., Bhasin A., Harshey R. M. 1995; Mutational analysis of flagellum-independent surface spreading of Serratia marcescens 274 on a low-agar medium. J Bacteriol177:987–991
    [Google Scholar]
  35. McGowan S., Sebaihia M., Jones S.. 7 other authors 1995; Carbapenem antibiotic production in Erwinia carotovora is regulated By CarR, a homolog of the Lux transcriptional activator. Microbiology141:541–550[CrossRef]
    [Google Scholar]
  36. Melvin M. S., Wooton K. E., Rich C. C., Saluta G. R., Kucera G. L., Lindquist N., Manderville R. A. 2001; Copper-nuclease efficiency correlates with cytotoxicity for the 4-methoxypyrrolic natural products. J Inorg Biochem87:129–135[CrossRef]
    [Google Scholar]
  37. Montaner B., Navarro S., Vilaseca M., Martinell M., Giralt E., Gil J, Piqué M., Peréz-Tomás R. 2000; Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines. Br J Pharmacol131:585–593[CrossRef]
    [Google Scholar]
  38. Morrison D. A. 1966; Prodigiosin synthesis in mutants of Serratia marcesens. J Bacteriol91:1599–1604
    [Google Scholar]
  39. Mortellaro A., Songia S., Gnocchi P., Ferrari M., Fornasiero C., D'Alessio R., Isetta A., Colotta F., Golay J. 1999; New immunosuppressive drug PNU156804 blocks IL-2-dependent proliferation and NF-kappa B and AP-1 activation. J Immunol162:7102–7109
    [Google Scholar]
  40. Park G., Tomlinson J. T., Melvin M. S., Wright M. W., Day C. S., Manderville R. A. 2003; Zinc and copper complexes of prodigiosin: implications for copper-mediated double-strand DNA cleavage. Org Lett5:113–116[CrossRef]
    [Google Scholar]
  41. Petersen C., Møller L. B. 2000; Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene261:289–298[CrossRef]
    [Google Scholar]
  42. Rensing C., Fan B., Sharma R., Mitra B., Rosen B. P. 2000; CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc Natl Acad Sci U S A97:652–656[CrossRef]
    [Google Scholar]
  43. Reuter K., Mofid M. R., Marahiel M. A., Ficner R. 1999; Crystal structure of the surfactin synthetase-activating enzyme sfp: a prototype of the 4′-phosphopantetheinyl transferase superfamily. EMBO J18:6823–6831[CrossRef]
    [Google Scholar]
  44. Rudd B. A., Hopwood D. A. 1980; A pigmented mycelial antibiotic in Streptomyces coelicolor: Control by a chromosomal gene cluster. J Gen Microbiol119:333–340
    [Google Scholar]
  45. Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M. A., Barrell B. 2000; Artemis: sequence visualization and annotation. Bioinformatics16:944–945[CrossRef]
    [Google Scholar]
  46. Sambrook J., Fritsch E. F., Maniatis T. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  47. Slater H., Crow M., Everson L., Salmond G. P. 2003; Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol Microbiol47:303–320
    [Google Scholar]
  48. Staden R. 1996; The Staden sequence analysis package. Mol Biotechnol5:233–241[CrossRef]
    [Google Scholar]
  49. Stock I., Grueger T., Wiedemann B. 2003; Natural antibiotic susceptibility of strains of Serratia marcescens and the S. liquefaciens complex: S. liquefaciens sensu stricto, S. proteamaculans and S. grimesii. Int J Antimicrob Agents22:35–47
    [Google Scholar]
  50. Stoyanov J. V., Hobman J. L., Brown N. L. 2001; CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol39:502–511[CrossRef]
    [Google Scholar]
  51. Summers A. O. 1992; Untwist and shout: a heavy metal-responsive transcriptional regulator. J Bacteriol174:3097–3101
    [Google Scholar]
  52. Summers R. G., Wendt-Pienkowski E., Motamedi H., Hutchinson C. R. 1992; Nucleotide sequence of the tcmII-tcmIV region of the tetracenomycin C biosynthetic gene cluster of Streptomyces glaucescens and evidence that the tcmN gene encodes a multifunctional cyclase-dehydratase-O-methyl transferase. J Bacteriol174:1810–1820
    [Google Scholar]
  53. Thomas M. G., Burkart M. D., Walsh C. T. 2002; Conversion of l-proline to pyrrolyl-2-carboxyl-S-PCP during undecylprodigiosin and pyoluteorin biosynthesis. Chem Biol9:171–184[CrossRef]
    [Google Scholar]
  54. Thomson N. R., Cox A., Bycroft B. W., Stewart G. S., Williams P., Salmond G. P. 1997; The rap and hor proteins of Erwinia, Serratia and Yersinia: a novel subgroup in a growing superfamily of proteins regulating diverse physiological processes in bacterial pathogens. Mol Microbiol26:531–544[CrossRef]
    [Google Scholar]
  55. Thomson N. R., Crow M. A., McGowan S. J., Cox A., Salmond G. P. 2000; Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol36:539–556
    [Google Scholar]
  56. Tiffany K. A., Roberts D. L., Wang M., Paschke R., Mohsen A. W., Vockley J., Kim J. J. 1997; Structure of human isovaleryl-CoA dehydrogenase at 2·6 A resolution: structural basis for substrate specificity. Biochemistry36:8455–8464[CrossRef]
    [Google Scholar]
  57. Traub W. H. 2000; Antibiotic susceptibility of Serratia marcescens and Serratia liquefaciens. Chemotherapy46:315–321[CrossRef]
    [Google Scholar]
  58. Tsao S. W., Rudd B. A., He X. G., Chang C. J., Floss H. G. 1985; Identification of a red pigment from Streptomyces coelicolor A3(2) as a mixture of prodigiosin derivatives. J Antibiot (Tokyo)38:128–131[CrossRef]
    [Google Scholar]
  59. Tsuji R. F., Yamamoto M., Nakamura A., Kataoka T., Magae J., Nagai K., Yamasaki M. 1990; Selective immunosuppression of prodigiosin 25-C and FK506 in the murine immune system. J Antibiot (Tokyo)43:1293–1301[CrossRef]
    [Google Scholar]
  60. Tsuji R. F., Magae J., Yamashita M., Nagai K., Yamasaki M. 1992; Immunomodulating properties of prodigiosin 25-C, an antibiotic which preferentially suppresses induction of cytotoxic T cells. J Antibiot (Tokyo)45:1295–1302[CrossRef]
    [Google Scholar]
  61. VanBogelen R. A., Olson E. R., Wanner B. L., Neidhart F. C. 1996; Global analysis of proteins synthesised during phosphorous restriction in Escherichia coli. J Bacteriol178:4344–4366
    [Google Scholar]
  62. Webster S. P., Alexeev D., Campopiano D. J., Watt R. M., Alexeeva M., Sawyer L., Baxter R. L. 2000; Mechanism of 8-amino-7-oxononanoate synthase: spectroscopic, kinetic, and crystallographic studies. Biochemistry39:516–528[CrossRef]
    [Google Scholar]
  63. White J., Bibb M. 1997; bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade. J Bacteriol179:627–633
    [Google Scholar]
  64. Williams R. P. 1973; Biosynthesis of prodigiosin, a secondary metabolite of Serratia marcescens. Appl Microbiol25:396–402
    [Google Scholar]
  65. Williams R. P., Quadri S. M. 1980; The pigments of Serratia. In The Genus Serratia pp31–75 Edited by Graevenitz A. Von, Rubin S. J.. Boca Raton, FL: CRC Press Inc;
    [Google Scholar]
  66. Williams R. P., Gott C. L., Qadri S. M., Scott R. H. 1971; Influence of temperature of incubation and type of growth medium on pigmentation in Serratia marcescens. J Bacteriol106:438–443
    [Google Scholar]
  67. Xu H., Wang Z. X., Schmidt J., Heide L., Li S. M. 2002; Genetic analysis of the biosynthesis of the pyrrole and carbamoyl moieties of coumermycin A1 and novobiocin. Mol Genet Genomics268:387–396[CrossRef]
    [Google Scholar]
  68. Yanagida N., Uozumi T., Beppu T. 1986; Specific excretion of Serratia protease through the outer membrane ofEscherichia coli. J Bacteriol166:937–944
    [Google Scholar]
  69. Yang Y. J., Wu P. J., Livermore D. M. 1990; Biochemical characterization of a beta-lactamase that hydrolyzes penems and carbapenems from two Serratia marcescens isolates. Antimicrob Agents Chemother34:755–758[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27222-0
Loading
/content/journal/micro/10.1099/mic.0.27222-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error