1887

Abstract

is a pathogenic yeast species closely related to . However, it is less frequently associated with human disease and displays reduced virulence in animal models of infection. Here comparative genomic hybridization was used in order to assess why is apparently less virulent than . In these experiments the genomes of the two species were compared by co-hybridizing microarrays with fluorescently labelled and genomic DNA. genomic DNA was found to hybridize reproducibly to 95·6 % of gene-specific sequences, indicating a significant degree of nucleotide sequence homology (>60 %) in these sequences. The remaining 4·4 % of sequences (representing 247 genes) gave / normalized fluorescent signal ratios that indicated significant sequence divergence (<60 % homology) or absence in . Sequence divergence was identified in several genes (confirmed by Southern blot analysis and sequence analysis of PCR products) with putative virulence functions, including the gene encoding the hypha-specific human transglutaminase substrate Hwp1p. Poor hybridization of genomic DNA to the array sequences for the secreted aspartyl proteinase-encoding gene also led to the finding that was absent in and that this species possesses only one gene homologous to and of . In addition, divergence and absence of sequences in several gene families was identified, including a family of -like GPI-anchored proteins, a family of genes homologous to a putative transcriptional activator () and several genes. This study has confirmed the close relatedness of and and has identified a subset of unique genes that may contribute to the increased prevalence and virulence of this species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27221-0
2004-10-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/10/mic1503363.html?itemId=/content/journal/micro/10.1099/mic.0.27221-0&mimeType=html&fmt=ahah

References

  1. Al Mosaid, A., Sullivan, D., Salkin, I. F., Shanley, D. & Coleman, D. C. ( 2001; ). Differentiation of Candida dubliniensis from Candida albicans on Staib agar and caffeic acid-ferric citrate agar. J Clin Microbiol 39, 323–327.[CrossRef]
    [Google Scholar]
  2. Al Mosaid, A., Sullivan, D. J. & Coleman, D. C. ( 2003; ). Differentiation of Candida dubliniensis from Candida albicans on Pal's agar. J Clin Microbiol 41, 4787–4789.[CrossRef]
    [Google Scholar]
  3. Alves, S. H., Milan, E. P., de Laet Sant'Ana, P., Oliveira, L. O., Santurio, J. M. & Colombo, A. L. ( 2002; ). Hypertonic Sabouraud broth as a simple and powerful test for Candida dubliniensis screening. Diagn Microbiol Infect Dis 43, 85–86.[CrossRef]
    [Google Scholar]
  4. Bailey, D. A., Feldman, P. J. F., Bovey, M., Gow, N. A. R. & Brown, A. J. P. ( 1996; ). The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J Bacteriol 178, 5353–5360.
    [Google Scholar]
  5. Braun, B. R. & Johnson, A. D. ( 1997; ). Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105–109.[CrossRef]
    [Google Scholar]
  6. Braun, B. R., Head, W. S., Wang, M. X. & Johnson, A. D. ( 2000; ). Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156, 31–44.
    [Google Scholar]
  7. Coleman, D. C., Sullivan, D. J., Bennett, D. E., Moran, G. P., Barry, H. J. & Shanley, D. B. ( 1997; ). Candidiasis: the emergence of a novel species, Candida dubliniensis. AIDS 11, 557–567.[CrossRef]
    [Google Scholar]
  8. Daran-Lapujade, P., Daran, J. M., Kotter, P., Petit, T., Piper, M. D. & Pronk, J. T. ( 2003; ). Comparative genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D using oligonucleotide microarrays. FEMS Yeast Res 4, 259–269.[CrossRef]
    [Google Scholar]
  9. Dong, Y., Glasner, J. D., Blattner, F. R. & Triplett, E. W. ( 2001; ). Genomic interspecies microarray hybridization: rapid discovery of three thousand genes in the maize endophyte Klebsiella pneumoniae 342, by microarray hybridization with Escherichia coli K-12 open reading frames. Appl Environ Microbiol 67, 1911–1921.[CrossRef]
    [Google Scholar]
  10. Donnelly, S. A., Sullivan, D. J., Shanley, D. B. & Coleman, D. C. ( 1999; ). Phylogenetic analysis and rapid identification of Candida dubliniensis based on analysis of ACT1 intron and exon sequences. Microbiology 145, 1871–1882.[CrossRef]
    [Google Scholar]
  11. Felk, A., Kretschmar, M., Albrecht, A. & 7 other authors ( 2002; ). Candida albicans hyphal formation and the expression of the Efg1-regulated proteinases Sap4 to Sap6 are required for the invasion of parenchymal organs. Infect Immun 70, 3689–3700.[CrossRef]
    [Google Scholar]
  12. Gallagher, P. J., Bennett, D. E., Henman, M. C., Russell, R. J., Flint, S. R., Shanley, D. B. & Coleman, D. C. ( 1992; ). Reduced azole susceptibility of Candida albicans from HIV-positive patients and a derivative exhibiting colony morphology variation. J Gen Microbiol 138, 1901–1911.[CrossRef]
    [Google Scholar]
  13. Gee, S. F., Joly, S., Soll, D. R., Meis, J. F., Verweij, P. E., Polacheck, I., Sullivan, D. J. & Coleman, D. C. ( 2002; ). Identification of four distinct genotypes of Candida dubliniensis and detection of microevolution in vitro and in vivo. J Clin Microbiol 40, 556–574.[CrossRef]
    [Google Scholar]
  14. Gilfillan, G. D., Sullivan, D. J., Haynes, K., Parkinson, T., Coleman, D. C. & Gow, N. A. R. ( 1998; ). Candida dubliniensis: phylogeny and putative virulence factors. Microbiology 144, 829–838.[CrossRef]
    [Google Scholar]
  15. Hannula, J., Saarela, M., Dogan, B., Paatsama, J., Koukila-Kahkola, P., Pirinen, S., Alakomi, H. L., Perheentupa, J. & Asikainen, S. ( 2000; ). Comparison of virulence factors of oral Candida dubliniensis and Candida albicans isolates in healthy people and patients with chronic candidosis. Oral Microbiol Immunol 15, 238–244.[CrossRef]
    [Google Scholar]
  16. Higgins, D. G. & Sharp, P. M. ( 1988; ). clustal: a package for performing multiple sequence alignment on a microcomputer. Gene 73, 237–244.[CrossRef]
    [Google Scholar]
  17. Hoyer, L. L. ( 2001; ). The ALS gene family of Candida albicans. Trends Microbiol 9, 176–180.[CrossRef]
    [Google Scholar]
  18. Hoyer, L. L., Fundyga, R., Hecht, J. E., Kapteyn, J. C., Klis, F. M. & Arnold, J. ( 2001; ). Characterization of agglutinin-like sequence genes from non-albicans Candida and phylogenetic analysis of the ALS family. Genetics 157, 1555–1567.
    [Google Scholar]
  19. Hube, B., Monod, M., Schofield, D. A., Brown, A. J. P. & Gow, N. A. R. ( 1994; ). Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol 14, 87–99.[CrossRef]
    [Google Scholar]
  20. Jabra-Rizk, M. A., Ferreira, S. M., Sabet, M., Falkler, W. A., Merz, W. G. & Meiller, T. F. ( 2001; ). Recovery of Candida dubliniensis and other yeasts from human immunodeficiency virus-associated periodontal lesions. J Clin Microbiol 39, 4520–4522.[CrossRef]
    [Google Scholar]
  21. Kaiser, B., Munder, T., Saluz, H.-P., Kunkel, W. & Eck, R. ( 1999; ). Identification of a gene encoding the pyruvate decarboxylase gene regulator CaPdc2p from Candida albicans. Yeast 15, 585–591.[CrossRef]
    [Google Scholar]
  22. Kibbler, C. C., Seaton, S., Barnes, R. A., Gransden, W. R., Holliman, R. E., Johnson, E. M., Perry, J. D., Sullivan, D. J. & Wilson, J. A. ( 2003; ). Management and outcome of bloodstream infections due to Candida species in England and Wales. J Hosp Infect 54, 18–24.[CrossRef]
    [Google Scholar]
  23. Kurzai, O., Heinz, W. J., Sullivan, D. J., Coleman, D. C., Frosch, M. & Muhlschlegel, F. A. ( 1999; ). Rapid PCR test for discriminating between Candida albicans and Candida dubliniensis isolates using primers derived from the pH-regulated PHR1 and PHR2 genes of C. albicans. J Clin Microbiol 37, 1587–1590.
    [Google Scholar]
  24. Lubkowitz, M. A., Hauser, L., Breslav, M., Naider, F. & Becker, J. M. ( 1997; ). An oligopeptide transporter gene from Candida albicans. Microbiology 143, 387–396.[CrossRef]
    [Google Scholar]
  25. Meis, J. F. G. M., Lunel, F. M. V., Verweij, P. E. & Voss, A. ( 2000; ). One-year prevalence of Candida dubliniensis in a Dutch university hospital. J Clin Microbiol 38, 3139–3140.
    [Google Scholar]
  26. Miyasaki, S. H., White, T. C. & Agabian, N. ( 1994; ). A fourth secreted aspartyl proteinase gene (SAP4) and a CARE2 repetitive element are located upstream of the SAP1 gene in Candida albicans. J Bacteriol 176, 1702–1710.
    [Google Scholar]
  27. Moran, G. P., Sanglard, D., Donnelly, S. M., Shanley, D. B., Sullivan, D. J. & Coleman, D. C. ( 1998; ). Identification and expression of multidrug transporters responsible for fluconazole resistance in Candida dubliniensis. Antimicrob Agents Chemother 42, 1819–1830.
    [Google Scholar]
  28. Moran, G., Sullivan, D., Morrschhauser, J. & Coleman, D. ( 2002; ). The Candida dubliniensis CdCDR1 gene is not essential for fluconazole resistance. Antimicrob Agents Chemother 46, 2829–2841.[CrossRef]
    [Google Scholar]
  29. Murray, A. E., Lies, D., Li, G., Nealson, K., Zhou, J. & Tiedje, J. M. ( 2001; ). DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes. Proc Natl Acad Sci U S A 98, 9853–9858.[CrossRef]
    [Google Scholar]
  30. Naglik, J. R., Challacombe, S. J. & Hube, B. ( 2003; ). Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67, 400–428.[CrossRef]
    [Google Scholar]
  31. Perea, S., Lopez-Ribot, J. L., Wickes, B. L., Kirkpatrick, W. R., Dib, O. P., Bachmann, S. P., Keller, S. M., Martinez, M. & Patterson, T. F. ( 2002; ). Molecular mechanisms of fluconazole resistance in Candida dubliniensis isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob Agents Chemother 46, 1695–1703.[CrossRef]
    [Google Scholar]
  32. Pfaller, M. A. & Diekema, D. J. ( 2004; ). Twelve years of fluconazole in clinical practice: global trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida. Clin Microbiol Infect 10 Suppl 1, 11–23.
    [Google Scholar]
  33. Phalip, V., Kuhn, I., Lemoine, Y. & Jeltsch, J.-M. ( 1999; ). Characterization of the biotin biosynthesis pathway in Saccharomyces cerevisiae and evidence for a cluster containing BIO5, a novel gene involved in vitamer uptake. Gene 232, 43–51.[CrossRef]
    [Google Scholar]
  34. Pinjon, E., Sullivan, D., Salkin, I., Shanley, D. & Coleman, D. ( 1998; ). Simple, inexpensive, reliable method for differentiation of Candida dubliniensis from Candida albicans. J Clin Microbiol 36, 2093–2095.
    [Google Scholar]
  35. Pinjon, E., Moran, G. P., Jackson, C. J., Kelly, S. L., Sanglard, D., Coleman, D. C. & Sullivan, D. J. ( 2003; ). Molecular mechanisms of itraconazole resistance in Candida dubliniensis. Antimicrob Agents Chemother 47, 2424–2437.[CrossRef]
    [Google Scholar]
  36. Sanglard, D., Hube, B., Monod, M., Odds, F. C. & Gow, N. A. R. ( 1997; ). A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5 and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 65, 3539–3546.
    [Google Scholar]
  37. Sebti, A., Kiehn, T. E., Perlin, D., Chaturvedi, V., Wong, M., Doney, A., Park, S. & Sepkowitz, K. A. ( 2001; ). Candida dubliniensis at a cancer center. Clin Infect Dis 32, 1034–1038.[CrossRef]
    [Google Scholar]
  38. Soll, D. R. ( 2000; ). The ins and outs of DNA fingerprinting the infectious fungi. Clin Microbiol Rev 13, 332–370.[CrossRef]
    [Google Scholar]
  39. Southern, E. ( 1975; ). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98, 503–517.[CrossRef]
    [Google Scholar]
  40. Staab, J. F., Bradway, S. D., Fidel, P. L. & Sundstrom, P. ( 1999; ). Adhesive and mammalian transglutaminase substrate properties of Candida albicans HWP1. Science 283, 1535–1538.[CrossRef]
    [Google Scholar]
  41. Staib, P., Moran, G. P., Sullivan, D. J., Coleman, D. C. & Morschhauser, J. ( 2001; ). Isogenic strain construction and gene targeting in Candida dubliniensis. J Bacteriol 183, 2859–2865.[CrossRef]
    [Google Scholar]
  42. Sullivan, D. J., Westerneng, T. J., Haynes, K. A., Bennett, D. E. & Coleman, D. C. ( 1995; ). Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology 141, 1507–1521.[CrossRef]
    [Google Scholar]
  43. Sullivan, D. J., Moran, G. P., Pinjon, E., Al-Mosaid, A., Stokes, C., Vaughan, C. & Coleman, D. C. ( 2004; ). Comparison of epidemiology, drug resistance mechanisms, and virulence of Candida dubliniensis and Candida albicans. FEMS Yeast Res 4, 369–376.[CrossRef]
    [Google Scholar]
  44. Sundstrom, P. ( 2002; ). Adhesion in Candida spp. Cell Microbiol 4, 461–469.[CrossRef]
    [Google Scholar]
  45. Vilela, M. M., Kamei, K., Sano, A., Tanaka, R., Uno, J., Takahashi, I., Ito, J., Yarita, K. & Miyaji, M. ( 2002; ). Pathogenicity and virulence of Candida dubliniensis: comparison with C. albicans. Med Mycol 40, 249–257.[CrossRef]
    [Google Scholar]
  46. Willis, A. M., Coulter, W. A., Sullivan, D. J., Coleman, D. C., Hayes, J. R., Bell, P. M. & Lamey, P. J. ( 2000; ). Isolation of C. dubliniensis from insulin-using diabetes mellitus patients. J Oral Pathol Med 29, 86–90.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27221-0
Loading
/content/journal/micro/10.1099/mic.0.27221-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error