1887

Abstract

Bacterial pathogens such as undergo major physiological changes when they infect their hosts, requiring the coordinated regulation of gene expression in response to the stresses encountered. Several environmental factors modify the expression of virulence genes. This report shows that the expression of (virulence gene encoding the cell-wall-associated protein A) is down-regulated by high osmolarity (1 M NaCl, 1 M KCl or 1 M sucrose) in the wild-type strain and upregulated by novobiocin (a DNA gyrase inhibitor that relaxes DNA). A allele corresponding to a double mutation in the B subunit of DNA gyrase relaxed DNA and consequently induced expression, confirming that expression is regulated by DNA topology. Furthermore, in the presence of novobiocin plus 1 M NaCl, a good correlation was observed between DNA supercoiling and expression. The ArlS–ArlR two-component system is involved in the expression of virulence genes such as . Presence of an deletion decreased the effect of DNA supercoiling modulators on expression, suggesting that active Arl proteins are necessary for the full effect of DNA gyrase inhibitors and high osmolarity on expression. Indeed, evidence is provided for a relationship between the deletion and topological changes in plasmid DNA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27194-0
2004-11-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503807.html?itemId=/content/journal/micro/10.1099/mic.0.27194-0&mimeType=html&fmt=ahah

References

  1. Ashiuchi M., Kuwana E., Yamamoto T., Komatsu K., Soda K., Misono H. 2002; Glutamate racemase is an endogenous DNA gyrase inhibitor. J Biol Chem277:39070–39073[CrossRef]
    [Google Scholar]
  2. Bhriain N. N., Dorman C. J., Higgins C. F. 1989; An overlap between osmotic and anaerobic stress responses: a potential role for DNA supercoiling in the coordinate regulation of gene expression. Mol Microbiol3:933–942[CrossRef]
    [Google Scholar]
  3. Chan P. F., Foster S. J. 1998a; The role of environmental factors in the regulation of virulence-determinant expression in Staphylococcus aureus 8325-4. Microbiology144:2469–2479[CrossRef]
    [Google Scholar]
  4. Chan P. F., Foster S. J. 1998b; Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus. J Bacteriol180:6232–6241
    [Google Scholar]
  5. Chandler M. S., Smith R. A. 1996; Characterization of the Haemophilus influenzae topA locus: DNA topoisomerase I is required for genetic competence. Gene169:25–31[CrossRef]
    [Google Scholar]
  6. Cheung A. L., Fischetti V. A. 1988; Variation in the expression of cell wall proteins of Staphylococcus aureus grown on solid and liquid media. Infect Immun56:1061–1065
    [Google Scholar]
  7. Cheung A. L., Koomey J. M., Butler C. A., Projan S. J., Fischetti V. A. 1992; Regulation of exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr. Proc Natl Acad Sci U S A89:6462–6466[CrossRef]
    [Google Scholar]
  8. Cheung A. L., Eberhardt K., Heinrichs J. H. 1997; Regulation of protein A synthesis by the sar and agr loci of Staphylococcus aureus. Infect Immun65:2243–2249
    [Google Scholar]
  9. Cheung A. L., Schmidt K., Bateman B., Manna A. C. 2001; SarS, a SarA homolog repressible by agr, is an activator of protein A synthesis in Staphylococcus aureus. Infect Immun69:2448–2455[CrossRef]
    [Google Scholar]
  10. Chien Y., Manna A. C., Projan S. J., Cheung A. L. 1999; SarA, a global regulator of virulence determinants in Staphylococcus aureus, binds to a conserved motif essential for sar-dependent gene regulation. J Biol Chem274:37169–37176[CrossRef]
    [Google Scholar]
  11. Conter A. 2003; Plasmid DNA supercoiling and survival in long-term cultures of Escherichia coli: role of NaCl. J Bacteriol185:5324–5327[CrossRef]
    [Google Scholar]
  12. Contreras A., Maxwell A. 1992; gyrB mutations which confer coumarin resistance also affect DNA supercoiling and ATP hydrolysis by Escherichia coli DNA gyrase. Mol Microbiol6:1617–1624[CrossRef]
    [Google Scholar]
  13. Dorman C. J. 1991; DNA supercoiling and environmental regulation of gene expression in pathogenic bacteria. Infect Immun59:745–749
    [Google Scholar]
  14. Drlica K. 1992; Control of bacterial DNA supercoiling. Mol Microbiol6:425–433[CrossRef]
    [Google Scholar]
  15. Fournier B., Hooper D. C. 1998; Mutations in topoisomerase IV and DNA gyrase of Staphylococcus aureus: novel pleiotropic effects on quinolone and coumarin activity. Antimicrob Agents Chemother42:121–128[CrossRef]
    [Google Scholar]
  16. Fournier B., Hooper D. C. 2000; A new two-component regulatory system involved in adhesion, autolysis, and extracellular proteolytic activity of Staphylococcus aureus. J Bacteriol182:3955–3964[CrossRef]
    [Google Scholar]
  17. Fournier B., Aras R., Hooper D. C. 2000; Expression of the multidrug resistance transporter NorA from Staphylococcus aureus is modified by a two-component regulatory system. J Bacteriol182:664–671[CrossRef]
    [Google Scholar]
  18. Fournier B., Klier A., Rapoport G. 2001; The two-component system ArlS-ArlR is a regulator of virulence gene expression in Staphylococcus aureus. Mol Microbiol41:247–261[CrossRef]
    [Google Scholar]
  19. Gao J., Stewart G. C. 2004; Regulatory elements of the Staphylococcus aureus protein A (Spa) promoter. J Bacteriol186:3738–3748[CrossRef]
    [Google Scholar]
  20. Giraudo A. T., Raspanti C. G., Calzolari A., Nagel R. 1994; Characterization of a Tn551-mutant of Staphylococcus aureus defective in the production of several exoproteins. Can J Microbiol40:677–681[CrossRef]
    [Google Scholar]
  21. Graham J. E., Wilkinson B. J. 1992; Staphylococcus aureus osmoregulation: roles for choline, glycine betaine, proline, and taurine. J Bacteriol174:2711–2716
    [Google Scholar]
  22. Hartleib J., Kohler N., Dickinson R. B.. 7 other authors 2000; Protein A is the von Willebrand factor binding protein on Staphylococcus aureus. Blood96:2149–2156
    [Google Scholar]
  23. Hatfield G. W., Benham C. J. 2002; DNA topology-mediated control of global gene expression in Escherichia coli. Annu Rev Genet36:175–203[CrossRef]
    [Google Scholar]
  24. Hsieh L. S., Rouviere-Yaniv J., Drlica K. 1991; Bacterial DNA supercoiling and [ATP]/[ADP] ratio: changes associated with salt shock. J Bacteriol173:3914–3917
    [Google Scholar]
  25. Jalanko A., Palva I., Soderlund. 1981; Restriction maps of plasmids pUB110 and pBD9. Gene14:325–328[CrossRef]
    [Google Scholar]
  26. Jensen P. R., Loman L., Petra B., van der Weijden C., Westerhoff H. V. 1995; Energy buffering of DNA structure fails when Escherichia coli runs out of substrate. J Bacteriol177:3420–3426
    [Google Scholar]
  27. Khan S. A., Novick R. P. 1983; Complete nucleotide sequence of pT181, a tetracycline-resistance plasmid from Staphylococcus aureus. Plasmid10:251–259[CrossRef]
    [Google Scholar]
  28. Kreiswirth B. N., Lofdahl S., Betley M. J., O'Reilly M., Schlievert P. M., Bergdoll M. S., Novick R. P. 1983; The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature305:709–712[CrossRef]
    [Google Scholar]
  29. Lee C. Y., Buranen S. L., Ye Z. H. 1991; Construction of single-copy integration vectors for Staphylococcus aureus. Gene103:101–105[CrossRef]
    [Google Scholar]
  30. Lindsay J. A., Foster S. J. 1999; Interactive regulatory pathways control virulence determinant production and stability in response to environmental conditions in Staphylococcus aureus. Mol Gen Genet262:323–331[CrossRef]
    [Google Scholar]
  31. Manna A., Cheung A. L. 2001; Characterization of sarR, a modulator of sar expression in Staphylococcus aureus. Infect Immun69:885–896[CrossRef]
    [Google Scholar]
  32. Manna A. C., Cheung A. L. 2003; sarU, a sarA homolog, is repressed by SarT and regulates virulence genes in Staphylococcus aureus. Infect Immun71:343–353[CrossRef]
    [Google Scholar]
  33. Maxwell A. 1993; The interaction between coumarin drugs and DNA gyrase. Mol Microbiol9:681–686[CrossRef]
    [Google Scholar]
  34. McNamara P. J., Milligan-Monroe K. C., Khalili S., Proctor R. A. 2000; Identification, cloning, and initial characterization of rot, a locus encoding a regulator of virulence factor expression in Staphylococcus aureus. J Bacteriol182:3197–3203[CrossRef]
    [Google Scholar]
  35. Morfeldt E., Janzon L., Arvidson S., Lofdahl S. 1988; Cloning of a chromosomal locus (exp) which regulates the expression of several exoprotein genes in Staphylococcus aureus. Mol Gen Genet211:435–440[CrossRef]
    [Google Scholar]
  36. Novick R. P. 1991; Genetic systems in staphylococci. Methods Enzymol204:587–636
    [Google Scholar]
  37. Novick R. P. 2000; Pathogenicity factors and their regulation. In Gram-Positive Pathogens pp392–407 Edited by Fischetti V. A., Novick R. P., Ferreti J. J., Portnoy D. A., Rood J. I.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  38. Palmqvist N., Foster T., Tarkowski A., Josefsson E. 2002; Protein A is a virulence factor in Staphylococcus aureus arthritis and septic death. Microb Pathog33:239–249[CrossRef]
    [Google Scholar]
  39. Peng H. L., Novick R. P., Kreiswirth B., Kornblum J., Schlievert P. 1988; Cloning, characterization, and sequencing of an accessory gene regulator (agr) inStaphylococcus aureus. J Bacteriol170:4365–4372
    [Google Scholar]
  40. Projan S. J., Novick R. P. 1997; The molecular basis of pathogenicity. In The Staphylococci in Human Disease pp55–81 Edited by Crossley K. B., Archer G. L.. New York: Churchill Livingstone;
    [Google Scholar]
  41. Regassa L. B., Betley M. J. 1992; Alkaline pH decreases expression of the accessory gene regulator (agr) in Staphylococcus aureus. J Bacteriol174:5095–5100
    [Google Scholar]
  42. Regassa L. B., Novick R. P., Betley M. J. 1992; Glucose and nonmaintained pH decrease expression of the accessory gene regulator (agr) in Staphylococcus aureus. Infect Immun60:3381–3388
    [Google Scholar]
  43. Schmidt K. A., Manna A. C., Gill S., Cheung A. L. 2001; SarT, a repressor of alpha-hemolysin in Staphylococcus aureus. Infect Immun69:4749–4758[CrossRef]
    [Google Scholar]
  44. Schumacher M. A., Hurlburt B. K., Brennan R. G. 2001; Crystal structures of SarA, a pleiotropic regulator of virulence genes in S. aureus. Nature409:215–219[CrossRef]
    [Google Scholar]
  45. Sheehan B. J., Foster T. J., Dorman C. J., Park S., Stewart G. S. 1992; Osmotic and growth-phase dependent regulation of the eta gene of Staphylococcus aureus: a role for DNA supercoiling. Mol Gen Genet232:49–57[CrossRef]
    [Google Scholar]
  46. Sheridan S. D., Opel M. L., Hatfield G. W. 2001; Activation and repression of transcription initiation by a distant DNA structural transition. Mol Microbiol40:684–690[CrossRef]
    [Google Scholar]
  47. Shivakumar A. G., Gryczan T. J., Kozlov Y. I., Dubnau D. 1980; Organization of the pE194 genome. Mol Gen Genet179:241–252[CrossRef]
    [Google Scholar]
  48. Stahl M. L., Pattee P. A. 1983; Confirmation of protoplast fusion-derived linkages in Staphylococcus aureus by transformation with protoplast DNA. J Bacteriol154:406–412
    [Google Scholar]
  49. Steck T. R., Franco R. J., Wang J. Y., Drlica K. 1993; Topoisomerase mutations affect the relative abundance of many Escherichia coli proteins. Mol Microbiol10:473–481[CrossRef]
    [Google Scholar]
  50. Stock J. B., Ninfa A. J., Stock A. M. 1989; Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev53:450–490
    [Google Scholar]
  51. Tegmark K., Karlsson A., Arvidson S. 2000; Identification and characterization of SarH1, a new global regulator of virulence gene expression in Staphylococcus aureus. Mol Microbiol37:398–409[CrossRef]
    [Google Scholar]
  52. Wang J. Y., Syvanen M. 1992; DNA twist as a transcriptional sensor for environmental changes. Mol Microbiol6:1861–1866[CrossRef]
    [Google Scholar]
  53. Westerhoff H. V., O'Dea M. H., Maxwell A., Gellert M. 1988; DNA supercoiling by DNA gyrase. A static head analysis. Cell Biophys12:157–181[CrossRef]
    [Google Scholar]
  54. Yarwood J. M., McCormick J. K., Schlievert P. M. 2001; Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus. J Bacteriol183:1113–1123[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27194-0
Loading
/content/journal/micro/10.1099/mic.0.27194-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error