A thermophilic terephthalate-degrading methanogenic consortium was successfully enriched for 272 days in an anaerobic hybrid reactor, and the microbial structure was characterized using terminal RFLPs, clone libraries and fluorescence hybridization with rRNA-targeted oligonucleotide probes. All the results suggested that -related methanogens, -related bacterial populations in the Gram-positive low-G+C group, and OP5-related populations were the key members responsible for terephthalate degradation under thermophilic methanogenic conditions except during periods when the reactor experienced heat shock and pump failure. These perturbations caused a significant shift in bacterial population structure in sludge samples taken from the sludge bed but not from the surface of the packing materials. After system recovery, many other bacterial populations emerged, which belonged mainly to the Gram-positive low-G+C group and , as well as -, and . These newly emerged populations were probably also capable of degrading terephthalate in the hybrid system, but were out-competed by those bacterial populations before perturbations.


Article metrics loading...

Loading full text...

Full text loading...



  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  2. Amann, R. I.(1995).In situ identification of micro-organisms by whole-cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual, pp. 1–15. Edited by A. D. L. Akkerman, J. D. van Elsas & F. J. de Bruijn. Dordrecht, The Netherlands: Kluwer.
  3. Amann, R. I., Ludwig, W. & Schleifer, K. H.(1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143–169. [Google Scholar]
  4. Bouchez, T., Patureau, D., Dabert, P., Juretschko, S., Dore, J., Delgenes, P., Moletta, R. & Wagner, M.(2000). Ecological study of a bioaugmentation failure. Environ Microbiol 2, 179–190.[CrossRef] [Google Scholar]
  5. Castro, H. F., Williams, N. H. & Ogram, A.(2000). Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31, 1–9. [Google Scholar]
  6. Cheng, S. S., Ho, C. Y. & Wu, J. H.(1997). Pilot study of UASB process treating PTA manufacturing wastewater. Water Sci Technol 36(6-7), 73–82. [Google Scholar]
  7. Daims, H., Brülh, A., Amann, R., Schleifer, K. H. & Wagner, M.(1999). The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22, 434–444.[CrossRef] [Google Scholar]
  8. Dojka, M. A., Hugenholtz, P., Haack, S. K. & Pace, N. R.(1998). Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64, 3869–3877. [Google Scholar]
  9. El Mamouni, R., Guiot, S. R., Leduc, R. & Costerton, J. W.(1995). Characterization of different microbial nuclei as potential precursors of anaerobic granulation. J Biotechnol 39, 239–249.[CrossRef] [Google Scholar]
  10. Embley, T. M., Finlay, B. J., Thomas, R. H. & Dyal, P. L.(1992). The use of rRNA sequences and fluorescent probes to investigate the phylogenetic positions of the anaerobic ciliate Metopus palaeformis and its archaeobacterial endosymbiont. J Gen Microbiol 138, 1479–1487.[CrossRef] [Google Scholar]
  11. Fajardo, C., Guyot, J.-P., Macarie, H. & Monroy, O.(1997). Inhibition of anaerobic digestion by terephthalic acid and its aromatic by products. Water Sci Technol 36(6-7), 83–90. [Google Scholar]
  12. Hall, T. A.(1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98. [Google Scholar]
  13. Hicks, R. E., Amann, R. I. & Stahl, D. A.(1992). Dual staining of natural bacterioplankton with 4′,6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl Environ Microbiol 58, 2158–2163. [Google Scholar]
  14. Hugenholtz, P., Pitulle, C., Hershberger, K. L. & Pace, N. R.(1998). Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180, 366–376. [Google Scholar]
  15. Imachi, H., Sekiguchi, Y., Kamagata, Y., Hanada, S., Ohashi, A. & Harada, H.(2002).Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52, 1729–1735.[CrossRef] [Google Scholar]
  16. Kane, M. D., Poulsen, L. K. & Stahl, D. A.(1993). Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl Environ Microbiol 59, 682–686. [Google Scholar]
  17. Kengen, S. W. M., Breidenbach, C. G., Felske, A., Stams, A. J. M., Schraa, G. & de Vos, W. M.(1999). Reductive dechlorination of tetrachloroethene to cis-1,2-dichloroethene by a thermophilic anaerobic enrichment culture. Appl Environ Microbiol 65, 2312–2316. [Google Scholar]
  18. Kleerebezem, R., Mortier, J., Hulshoff Pol, L. W. & Lettinga, G.(1997). Anaerobic pretreatment of petrochemical effluents: terephthalic acid wastewater. Water Sci Technol 36(2-3), 237–248. [Google Scholar]
  19. Kleerebezem, R., Hulshoff Pol, L. W. & Lettinga, G.(1999a). Anaerobic degradation of phthalate isomers by methanogenic consortia. Appl Environ Microbiol 65, 1152–1160. [Google Scholar]
  20. Kleerebezem, R., Hulshoff Pol, L. W. & Lettinga, G.(1999b). The role of benzoate in anaerobic degradation of terephthalate. Appl Environ Microbiol 65, 1161–1167. [Google Scholar]
  21. Kleerebezem, R., Ivalo, M., Hulshoff Pol, L. W. & Lettinga, G.(1999c). High-rate treatment of terephthalate in anaerobic hybrid reactors. Biotechnol Prog 15, 347–357.[CrossRef] [Google Scholar]
  22. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M.(2001).mega2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245.[CrossRef] [Google Scholar]
  23. Liu, W. T., Marsh, T. L., Cheng, H. & Forney, L. J.(1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphism of 16S ribosomal DNA. Appl Environ Microbiol 63, 4516–4522. [Google Scholar]
  24. Liu, W. T., Huang, C. L., Hu, J. Y., Soon, L. F., Ong, S. L. & Ng, W. J.(2002). Denaturing gradient gel electrophoresis polymorphism for rapid 16S rDNA clone screening and microbial diversity estimation. J Biosci Bioeng 93, 101–103.[CrossRef] [Google Scholar]
  25. Loy, A., Lehner, A., Lee, N., Adamczyk, J., Meier, H., Ernst, J., Schleifer, K. H. & Wagner, M.(2002). Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68, 5064–5081.[CrossRef] [Google Scholar]
  26. Ludwig, W., Strunk, O., Westram, R. & 29 other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  27. Macarie, H.(2000). Overview of the application of anaerobic treatment to chemical and petrochemical wastewaters. Water Sci Technol 42(5-6), 201–214. [Google Scholar]
  28. Macarie, H., Noyola, A. & Guyot, J.-P.(1992). Anaerobic treatment of a petrochemical wastewater from a terephthalic acid plant. Water Sci Technol 25(7), 223–235. [Google Scholar]
  29. Maidak, B. L., Cole, J. R., Lilburn, T. G. & 9 other authors(2000). The RDP (Ribosomal Database Project) continues. Nucleic Acids Res 28, 173–174.[CrossRef] [Google Scholar]
  30. Manz, W., Amann, R., Ludwig, W., Vancanneyt, M. & Schleifer, K. H.(1996). Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142, 1097–1106.[CrossRef] [Google Scholar]
  31. Qiu, Y. L., Sekiguchi, Y., Imachi, H., Kamagata, Y., Tseng, I. C., Cheng, S. S., Ohashi, A. & Harada, H.(2004). Identification and isolation of anaerobic, syntrophic phthalate isomer-degrading microbes from methanogenic sludges treating wastewater from terephthalate manufacturing. Appl Environ Microbiol 70, 1617–1626.[CrossRef] [Google Scholar]
  32. Raskin, L., Stomly, J. M., Rittmann, B. E. & Stahl, D. A.(1994). Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60, 1232–1240. [Google Scholar]
  33. Schlötelburg, C.(2001).Mikrobielle Diversitat und Dynamik einer 1,2-Dichlorpropan dechlorierenden Mischkultur. PhD thesis, Humboldt-University, Berlin.
  34. Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S., Jetten, M. S. M., Metzger, J. W., Schleifer, K.-H. & Wagner, M.(2000). Molecular evidence for genus-level diversity of bacteria of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23, 93–106.[CrossRef] [Google Scholar]
  35. Sekiguchi, Y., Kamagata, Y., Syutsubo, K., Ohashi, A., Harada, H. & Nakamura, K.(1998). Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology 144, 2655–2665.[CrossRef] [Google Scholar]
  36. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. & Harada, H.(1999). Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65, 1280–1288. [Google Scholar]
  37. Stahl, D. A. & Amann, R.(1991). Development and application of nucleic acid probes. In Nucleic Acid Techniques in Bacterial Systematics, pp. 205–248. Edited by E. Stackebrandt & M. Goodfellow. New York: Wiley.
  38. Stickler, D.(1999). Biofilms. Curr Opin Microbiol 2, 270–275.[CrossRef] [Google Scholar]
  39. Stubner, S. & Meuser, K.(2000). Detection of Desulfotomaculum in an Italian rice paddy soil by 16S ribosomal nucleic acid analyses. FEMS Microbiol Ecol 34, 73–80.[CrossRef] [Google Scholar]
  40. Suresh, B., Davenport, B. & Mavar, L.(2001). Dimethyl terephthalate (DMT) and terephthalic acid (TPA). In SRI International's Chemical Economics Handbook Program (http://ceh.sric.sri.com/Public/Reports/).
  41. van Lier, J. B.(1996). Limitation of thermophilic anaerobic wastewater treatment and the consequences for process design. Antonie Van Leeuwenhoek 69, 1–14.[CrossRef] [Google Scholar]
  42. van Lier, J. B., Rebac, S. & Lettinga, G.(1997). High-rate anaerobic wastewater treatment under psychrophilic and thermophilic conditions. Water Sci Technol 35(10), 199–206. [Google Scholar]
  43. Wallner, G., Amann, R. & Beisker, W.(1993). Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for low cytometric identification of microorganisms. Cytometry 14, 136–143.[CrossRef] [Google Scholar]
  44. Wu, J. H., Liu, W. T., Tseng, I. C. & Cheng, S. S.(2001). Characterization of microbial consortia in an anaerobic granular sludge system treating terephthalate. Microbiology 147, 373–382. [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error