1887

Abstract

In , glycosylphosphatidylinositol (GPI)-anchored cell wall mannoproteins, including -agglutinin, are secreted to the cell surface through vesicular transport pathways. At the cell surface the GPI anchors are cleaved within the glycan, then transglycosylated to form a covalent cross-link to 1,6--glucan. Among mutants that were temperature-sensitive for growth and for ability to cross-link the mannoprotein -agglutinin to the cell wall, one strain was complemented by , which encodes an ER-Golgi v-SNARE. Temperature-sensitive mutations in caused aberrations in cell wall structure, including excretion of -agglutinin into the medium, sensitivity to lysis with Zymolyase and hypersensitivity to Calcofluor White. At restrictive temperatures, mutations block secretion of invertase and other proteins, but -agglutinin was excreted into the extracellular medium. In wild-type parental or cells, secretion of -agglutinin also continued after protein synthesis was blocked with cycloheximide. This secretion was due to continued export of a significant amount of -agglutinin from compartments distal to the -dependent secretion step. Thus, in cells the ER-Golgi block allowed secretion to continue, but prevented cell wall incorporation of the -agglutinin. Therefore, a mutation early in the secretion pathway caused aberrant cell wall synthesis by preventing localization of key components required in wall cross-links.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27189-0
2004-10-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/10/mic1503219.html?itemId=/content/journal/micro/10.1099/mic.0.27189-0&mimeType=html&fmt=ahah

References

  1. Albani, J. R., Sillen, A., Plancke, Y. D., Coddeville, B. & Engelborghs, Y.(2000). Interaction between carbohydrate residues of alpha1-acid glycoprotein (orosomucoid) and saturating concentrations of Calcofluor White. A fluorescence study. Carbohydr Res 327, 333–340.[CrossRef] [Google Scholar]
  2. Benachour, A., Sipos, G., Flury, I., Reggiori, F., Canivenc-Gansel, E., Vionnet, C., Conzelmann, A. & Benghezal, M.(1999). Deletion of GPI7, a yeast gene required for addition of a side chain to the glycosylphosphatidylinositol (GPI) core structure, affects GPI protein transport, remodeling, and cell wall integrity. J Biol Chem 274, 15251–15261.[CrossRef] [Google Scholar]
  3. Benghezal, M., Lipke, P. N. & Conzelmann, A.(1995). Identification of six complementation classes involved in the biosynthesis of glycosylphosphatidylinositol anchors in Saccharomyces cerevisiae. J Cell Biol 130, 1333–1344.[CrossRef] [Google Scholar]
  4. Chen, M. H., Shen, Z. M., Bobin, S., Kahn, P. C. & Lipke, P. N.(1995). Structure of Saccharomyces cerevisiae alpha-agglutinin. Evidence for a yeast cell wall protein with multiple immunoglobulin-like domains with atypical disulfides. J Biol Chem 270, 26168–26177.[CrossRef] [Google Scholar]
  5. Chuang, J. S. & Schekman, R. W.(1996). Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p. J Cell Biol 135, 597–610.[CrossRef] [Google Scholar]
  6. Costello, L. C. & Orlean, P.(1992). Inositol acylation of a potential glycosyl phosphoinositol anchor precursor from yeast requires acyl coenzyme A. J Biol Chem 267, 8599–8603. [Google Scholar]
  7. De Groot, P. W., Hellingwerf, K. J. & Klis, F. M.(2003). Genome-wide identification of fungal GPI proteins. Yeast 20, 781–796.[CrossRef] [Google Scholar]
  8. Flury, I., Benachour, A. & Conzelmann, A.(2000). YLL031c belongs to a novel family of membrane proteins involved in the transfer of ethanolaminephosphate onto the core structure of glycosylphosphatidylinositol anchors in yeast. J Biol Chem 275, 24458–24465.[CrossRef] [Google Scholar]
  9. Gaynor, E. C., Mondesert, G., Grimme, S. J., Reed, S. I., Orlean, P. & Emr, S. D.(1999). MCD4 encodes a conserved endoplasmic reticulum membrane protein essential for glycosylphosphatidylinositol anchor synthesis in yeast. Mol Biol Cell 10, 627–648.[CrossRef] [Google Scholar]
  10. Hamada, K., Terashima, H., Arisawa, M. & Kitada, K.(1998). Amino acid sequence requirement for efficient incorporation of glycosylphosphatidylinositol-associated proteins into the cell wall of Saccharomyces cerevisiae. J Biol Chem 273, 26946–26953.[CrossRef] [Google Scholar]
  11. Hauser, K. & Tanner, W.(1989). Purification of the inducible alpha-agglutinin of S. cerevisiae and molecular cloning of the gene. FEBS Lett 255, 290–294.[CrossRef] [Google Scholar]
  12. Hirsch, J. P. & Cross, F. R.(1993). The pheromone receptors inhibit the pheromone response pathway in Saccharomyces cerevisiae by a process that is independent of their associated G alpha protein. Genetics 135, 943–953. [Google Scholar]
  13. Hoffman, C. S. & Winston, F.(1987). A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57, 267–272.[CrossRef] [Google Scholar]
  14. Ito, H., Fukuda, Y., Murata, K. & Kimura, A.(1983). Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153, 163–168. [Google Scholar]
  15. Jue, C. K. & Lipke, P. N.(1985). Determination of reducing sugars in the nanomole range with tetrazolium blue. J Biochem Biophys Methods 11, 109–115.[CrossRef] [Google Scholar]
  16. Kapteyn, J. C., Montijn, R. C., Vink, E., de la Cruz, J., Llobell, A., Douwes, J. E., Shimoi, H., Lipke, P. N. & Klis, F. M.(1996). Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked beta-1,3-/beta-1,6-glucan heteropolymer. Glycobiology 6, 337–345.[CrossRef] [Google Scholar]
  17. Kapteyn, J. C., Van Den Ende, H. & Klis, F. M.(1999). The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim Biophys Acta 1426, 373–383.[CrossRef] [Google Scholar]
  18. Kitamura, K. & Yamamoto, Y.(1972). Purification and properties of an enzyme, zymolyase, which lyses viable yeast cells. Arch Biochem Biophys 153, 403–406.[CrossRef] [Google Scholar]
  19. Kollar, R., Petrakova, E., Ashwell, G., Robbins, P. W. & Cabib, E.(1995). Architecture of the yeast cell wall. The linkage between chitin and beta(1→3)-glucan. J Biol Chem 270, 1170–1178.[CrossRef] [Google Scholar]
  20. Kollar, R., Reinhold, B. B., Petrakova, E., Yeh, H. J., Ashwell, G., Drgonova, J., Kapteyn, J. C., Klis, F. M. & Cabib, E.(1997). Architecture of the yeast cell wall. Beta(1→6)-glucan interconnects mannoprotein, beta(1→3)-glucan, and chitin. J Biol Chem 272, 17762–17775.[CrossRef] [Google Scholar]
  21. Kostova, Z., Yan, B. C., Vainauskas, S., Schwartz, R., Menon, A. K. & Orlean, P.(2003). Comparative importance in vivo of conserved glutamate residues in the EX7E motif retaining glycosyltransferase Gpi3p, the UDP-GlcNAc-binding subunit of the first enzyme in glycosylphosphatidylinositol assembly. Eur J Biochem 270, 4507–4514.[CrossRef] [Google Scholar]
  22. Kwon-Chung, K. J., Hicks, J. B. & Lipke, P. N.(1990). Evidence that Candida stellatoidea type II is a mutant of Candida albicans that does not express sucrose-inhibitable alpha-glucosidase. Infect Immun 58, 2804–2808. [Google Scholar]
  23. Lagorce, A., Le Berre-Anton, V., Aguilar-Uscanga, B., Martin-Yken, H., Dagkessamanskaia, A. & Francois, J.(2002). Involvement of GFA1, which encodes glutamine-fructose-6-phosphate amidotransferase, in the activation of the chitin synthesis pathway in response to cell-wall defects in Saccharomyces cerevisiae. Eur J Biochem 269, 1697–1707.[CrossRef] [Google Scholar]
  24. Leidich, S. D., Kostova, Z., Latek, R. R., Costello, L. C., Drapp, D. A., Gray, W., Fassler, J. S. & Orlean, P.(1995). Temperature-sensitive yeast GPI anchoring mutants gpi2 and gpi3 are defective in the synthesis of N-acetylglucosaminyl phosphatidylinositol. Cloning of the GPI2 gene. J Biol Chem 270, 13029–13035.[CrossRef] [Google Scholar]
  25. Lian, J. P. & Ferro-Novick, S.(1993). Bos1p, an integral membrane protein of the endoplasmic reticulum to Golgi transport vesicles, is required for their fusion competence. Cell 73, 735–745.[CrossRef] [Google Scholar]
  26. Lipke, P. N. & Ovalle, R.(1998). Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 180, 3735–3740. [Google Scholar]
  27. Lipke, P. N., Terrance, K. & Wu, Y. S.(1987). Interaction of alpha-agglutinin with Saccharomyces cerevisiaea cells. J Bacteriol 169, 483–488. [Google Scholar]
  28. Lipke, P. N., Wojciechowicz, D. & Kurjan, J.(1989). AG alpha 1 is the structural gene for the Saccharomyces cerevisiae alpha-agglutinin, a cell surface glycoprotein involved in cell–cell interactions during mating. Mol Cell Biol 9, 3155–3165. [Google Scholar]
  29. Lu, C. F., Kurjan, J. & Lipke, P. N.(1994). A pathway for cell wall anchorage of Saccharomyces cerevisiae alpha-agglutinin. Mol Cell Biol 14, 4825–4833. [Google Scholar]
  30. Lu, C. F., Montijn, R. C., Brown, J. L., Klis, F., Kurjan, J., Bussey, H. & Lipke, P. N.(1995). Glycosyl phosphatidylinositol-dependent cross-linking of alpha-agglutinin and beta 1,6-glucan in the Saccharomyces cerevisiae cell wall. J Cell Biol 128, 333–340.[CrossRef] [Google Scholar]
  31. Lussier, M., White, A. M., Sheraton, J. & 17 other authors(1997). Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae. Genetics 147, 435–450. [Google Scholar]
  32. Montijn, R. C., Vink, E., Muller, W. H., Verkleij, A. J., Van Den Ende, H., Henrissat, B. & Klis, F. M.(1999). Localization of synthesis of beta1,6-glucan in Saccharomyces cerevisiae. J Bacteriol 181, 7414–7420. [Google Scholar]
  33. Morsomme, P., Prescianotto-Baschong, C. & Riezman, H.(2003). The ER v-SNAREs are required for GPI-anchored protein sorting from other secretory proteins upon exit from the ER. J Cell Biol 162, 403–412.[CrossRef] [Google Scholar]
  34. Muniz, M., Morsomme, P. & Riezman, H.(2001). Protein sorting upon exit from the endoplasmic reticulum. Cell 104, 313–320.[CrossRef] [Google Scholar]
  35. Neiman, A. M., Mhaiskar, V., Manus, V., Galibert, F. & Dean, N.(1997).Saccharomyces cerevisiae HOC1, a suppressor of pkc1, encodes a putative glycosyltransferase. Genetics 145, 637–645. [Google Scholar]
  36. Newman, A. P. & Ferro-Novick, S.(1987). Characterization of new mutants in the early part of the yeast secretory pathway isolated by a [3H]mannose suicide selection. J Cell Biol 105, 1587–1594.[CrossRef] [Google Scholar]
  37. Newman, A. P., Shim, J. & Ferro-Novick, S.(1990). BET1, BOS1, and SEC22 are members of a group of interacting yeast genes required for transport from the endoplasmic reticulum to the Golgi complex. Mol Cell Biol 10, 3405–3414. [Google Scholar]
  38. Orlean, P.(1997). Biogenesis of yeast cell wall and surface components. In Molecular and Cellular Biology of the Yeast Saccharomyces, pp. 229–362. Edited by J. Pringle, J. Broach & E. Jones. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Ovalle, R., Lim, S. T., Holder, B., Jue, C. K., Moore, C. W. & Lipke, P. N.(1998). A spheroplast rate assay for determination of cell wall integrity in yeast. Yeast 14, 1159–1166.[CrossRef] [Google Scholar]
  40. Ovalle, R., Spencer, M., Thiwanont, M. & Lipke, P. N.(1999). The spheroplast lysis assay for yeast in microtiter plate format. Appl Environ Microbiol 65, 3325–3327. [Google Scholar]
  41. Ram, A. F., Wolters, A., Ten Hoopen, R. & Klis, F. M.(1994). A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast 10, 1019–1030.[CrossRef] [Google Scholar]
  42. Reen, D. J.(1994). Enzyme-linked immunosorbent assay (ELISA). Methods Mol Biol 32, 461–466. [Google Scholar]
  43. Richard, M., De Groot, P., Courtin, O., Poulain, D., Klis, F. & Gaillardin, C.(2002). GPI7 affects cell-wall protein anchorage in Saccharomyces cerevisiae and Candida albicans. Microbiology 148, 2125–2133. [Google Scholar]
  44. Roh, D. H., Bowers, B., Riezman, H. & Cabib, E.(2002). Rho1p mutations specific for regulation of beta(1→3)glucan synthesis and the order of assembly of the yeast cell wall. Mol Microbiol 44, 1167–1183.[CrossRef] [Google Scholar]
  45. Roy, A., Lu, C. F., Marykwas, D. L., Lipke, P. N. & Kurjan, J.(1991). The AGA1 product is involved in cell surface attachment of the Saccharomyces cerevisiae cell adhesion glycoprotein a-agglutinin. Mol Cell Biol 11, 4196–4206. [Google Scholar]
  46. Sentandreu, R., Herrero, E., Elorza, M. V., Rico, H. & Pastor, J.(1983). Synthesis and assembly of wall polymers on regenerating yeast protoplasts. Experientia Suppl 46, 187–195. [Google Scholar]
  47. Shahinian, S. & Bussey, H.(2000).β-1,6-Glucan synthesis in Saccharomyces cerevisiae. Mol Microbiol 35, 477–489. [Google Scholar]
  48. Sijmons, P. C., Nederbragt, A. J., Klis, F. M. & Van den Ende, H.(1987). Isolation and composition of the constitutive agglutinins from haploid Saccharomyces cerevisiae cells. Arch Microbiol 148, 208–212.[CrossRef] [Google Scholar]
  49. Terrance, K.(1983).Sexual agglutination in Saccharomyces cerevisiae. PhD thesis, City University of New York.
  50. Terrance, K. & Lipke, P. N.(1981). Sexual agglutination in Saccharomyces cerevisiae. J Bacteriol 148, 889–896. [Google Scholar]
  51. Tsui, M. M. & Banfield, D. K.(2000). Yeast Golgi SNARE interactions are promiscuous. J Cell Sci 113, 145–152. [Google Scholar]
  52. Tsukahara, K., Hata, K., Nakamoto, K. & 9 other authors(2003). Medicinal genetics approach towards identifying the molecular target of a novel inhibitor of fungal cell wall assembly. Mol Microbiol 48, 1029–1042.[CrossRef] [Google Scholar]
  53. Umemura, M., Okamoto, M., Nakayama, K., Sagane, K., Tsukahara, K., Hata, K. & Jigami, Y.(2003). GWT1 gene is required for inositol acylation of glycosylphosphatidylinositol anchors in yeast. J Biol Chem 278, 23639–23647.[CrossRef] [Google Scholar]
  54. Valdivia, R. H. & Schekman, R.(2003). The yeasts Rho1p and Pkc1p regulate the transport of chitin synthase III (Chs3p) from internal stores to the plasma membrane. Proc Natl Acad Sci U S A 100, 10287–10292.[CrossRef] [Google Scholar]
  55. Vossen, J. H., Muller, W. H., Lipke, P. N. & Klis, F. M.(1997). Restrictive glycosylphosphatidylinositol anchor synthesis in cwh6/gpi3 yeast cells causes aberrant biogenesis of cell wall proteins. J Bacteriol 179, 2202–2209. [Google Scholar]
  56. Wojciechowicz, D. & Lipke, P. N.(1989). Alpha-agglutinin expression in Saccharomyces cerevisiae. Biochem Biophys Res Commun 161, 46–51.[CrossRef] [Google Scholar]
  57. Wojciechowicz, D., Lu, C. F., Kurjan, J. & Lipke, P. N.(1993). Cell surface anchorage and ligand-binding domains of the Saccharomyces cerevisiae cell adhesion protein alpha-agglutinin, a member of the immunoglobulin superfamily. Mol Cell Biol 13, 2554–2563. [Google Scholar]
  58. Wuestehube, L. J., Duden, R., Eun, A., Hamamoto, S., Korn, P., Ram, R. & Schekman, R.(1996). New mutants of Saccharomyces cerevisiae affected in the transport of proteins from the endoplasmic reticulum to the Golgi complex. Genetics 142, 393–406. [Google Scholar]
  59. Zhao, H., Shen, Z. M., Kahn, P. C. & Lipke, P. N.(2001). Interaction of alpha-agglutinin and a-agglutinin, Saccharomyces cerevisiae sexual cell adhesion molecules. J Bacteriol 183, 2874–2880.[CrossRef] [Google Scholar]
  60. Ziman, M., Chuang, J. S. & Schekman, R. W.(1996). Chs1p and Chs3p, two proteins involved in chitin synthesis, populate a compartment of the Saccharomyces cerevisiae endocytic pathway. Mol Biol Cell 7, 1909–1919.[CrossRef] [Google Scholar]
  61. Ziman, M., Chuang, J. S., Tsung, M., Hamamoto, S. & Schekman, R.(1998). Chs6p-dependent anterograde transport of Chs3p from the chitosome to the plasma membrane in Saccharomyces cerevisiae. Mol Biol Cell 9, 1565–1576.[CrossRef] [Google Scholar]
/content/journal/micro/10.1099/mic.0.27189-0
Loading
/content/journal/micro/10.1099/mic.0.27189-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error