1887

Abstract

is a Gram-positive soil bacterium that undergoes a complex developmental life cycle. The genome sequence of this organism was recently completed and has revealed the presence of over 60 sigma factors and a multitude of other transcriptional regulators, with a significant number of these being putative two-component signal transduction proteins. The authors have used the criteria established by Hoch and co-workers ( Fabret ., 1999 , 181, 1975–1983) to identify sensor kinase and response regulator genes encoded within the genome. This analysis has revealed the presence of 84 sensor kinase genes, 67 of which lie adjacent to genes encoding response regulators. This strongly suggests that these paired genes encode two-component systems. In addition there are 13 orphan response regulators encoded in the genome, several of which have already been characterized and are implicated in development and antibiotic production, and 17 unpaired and as yet uncharacterized sensor kinases. This article attempts to infer useful information from sequence analysis and reviews what is currently known about the two-component systems, unpaired sensor kinases and orphan response regulators of from both published reports and the authors' own unpublished data.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27181-0
2004-09-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/9/mic1502795.html?itemId=/content/journal/micro/10.1099/mic.0.27181-0&mimeType=html&fmt=ahah

References

  1. Adamidis T., Riggle P., Champness W. 1990; Mutations in a new Streptomyces coelicolor locus which globally block antibiotic biosynthesis but not sporulation. J Bacteriol172:2962–2969
    [Google Scholar]
  2. Ainsa J. A., Parry H. D., Chater K. F. 1999; A response regulator-like protein that functions at an intermediate stage of sporulation in Streptomyces coelicolor A3(2). Mol Microbiol34:607–619[CrossRef]
    [Google Scholar]
  3. Appleby J. R., Bourret R. B. 1999; Activation of CheY mutant D557N by phosphorylation at an alternative site, Ser-56. Mol Microbiol34:915–925[CrossRef]
    [Google Scholar]
  4. Aravind L., Ponting C. P. 1997; The GAF domain: an evolutionary link between diverse phototransducing proteins. Trends Biochem Sci22:458–459[CrossRef]
    [Google Scholar]
  5. Barrett J. F., Goldschmidt R. M., Lawrence L. E. & 19 other authors. 1998; Antibacterial agents that inhibit two-component signal transduction systems. Proc Natl Acad Sci U S A95:5317–5322[CrossRef]
    [Google Scholar]
  6. Bentley S. D., Chater K. F., 40 other authors Cerdeno-Tarraga. 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature417:141–147[CrossRef]
    [Google Scholar]
  7. Billot-Klein D., Blanot D., Gutmann L., van Heijenoort J. 1997; Association constants for the binding of vancomycin and teicoplanin to N-acetyl-d-alanyl-d-alanine and n-acetyl-d-alanyl-d-serine. Biochem J304:1021–1022
    [Google Scholar]
  8. Bishop A., Fielding S., Dyson P., Herron P. 2004; Concerted mutagenesis of a streptomycete genome: a link between osmoadaptation and antibiotic production. Genome Res14:893–900[CrossRef]
    [Google Scholar]
  9. Bourret R. B., Hess F., Simon M. I. 1990; Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein CheY. Proc Natl Acad Sci U S A87:41–45[CrossRef]
    [Google Scholar]
  10. Brian P., Riggle P. J., Santos R. A., Champness W. C. 1996; Global negative regulation of Streptomyces coelicolor antibiotic synthesis mediated by an absA-encoded putative signal transduction system. J Bacteriol178:3221–3231
    [Google Scholar]
  11. Brown J. R., Masuchi Y., Robb F. T., Doolittle W. F. 1994; Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J Mol Evol38:566–576
    [Google Scholar]
  12. Chang H. M., Chen M. Y., Shieh Y. T., Bibb M. J., Chen C. W. 1996; The cutRS signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin. Mol Microbiol21:1075–1085
    [Google Scholar]
  13. Claros M. G., von Heijne G. 1994; TopPred II: an improved software for membrane protein structure predictions. CABIOS10:685–686
    [Google Scholar]
  14. Cole S. T., Brosch R., Parkhill J.. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature11:537–544
    [Google Scholar]
  15. DiGiuseppe P. A., Silhavy T. J. 2003; Signal detection and target gene induction by the CpxRA two-component system. J Bacteriol185:2432–2440[CrossRef]
    [Google Scholar]
  16. Fabret C., Hoch J. A. 1998; A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J Bacteriol180:6375–6383
    [Google Scholar]
  17. Fabret C., Feher V. A., Hoch J. A. 1999; Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J Bacteriol181:1975–1983
    [Google Scholar]
  18. Fink D., Weissschuh N., Reuther J., Wohlleben W., Engels A. 2002; Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol Microbiol46:331–347[CrossRef]
    [Google Scholar]
  19. Furuya K., Hutchinson C. R. 1996; The DnrR protein of Streptomyces peucetius, a pseudo-response regulator, is a DNA-binding protein involved in the regulation of daunorubicin biosynthesis. J Bacteriol178:6310–6318
    [Google Scholar]
  20. Gough J., Karplus K., Hughey R., Chothia C. 2001; Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol313:903–919[CrossRef]
    [Google Scholar]
  21. Gust B., Challis G. L., Fowler K., Kieser T., Chater K. F. 2003; PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odour geosmin. Proc Natl Acad Sci U S A100:1541–1546[CrossRef]
    [Google Scholar]
  22. Guthrie E. P., Flaxman C. S., White J., Hodgson D. A., Bibb M. J., Chater K. F. 1998; A response-regulator-like activator of antibiotic synthesis from Streptomyces coelicolor A3(2) with an amino-terminal domain that lacks a phosphorylation pocket. Microbiology144:727–738[CrossRef]
    [Google Scholar]
  23. Hakenbeck R., Stock J. B. 1996; Analysis of two-component signal transduction systems involved in transcriptional regulation. Methods Enzymol273:281–300
    [Google Scholar]
  24. Hoch J. A. 1993; The phosphorelay signal transduction pathway in the initiation of Bacillus subtilis sporulation. J Cell Biochem51:55–61[CrossRef]
    [Google Scholar]
  25. Hong H. J., Paget M. S. B., Buttner M. J. 2002; A signal transduction system in Streptomyces coelicolor that activates the expression of a putative cell wall glycan operon in response to vancomycin and other cell wall-specific antibiotics. Mol Microbiol44:1199–1211[CrossRef]
    [Google Scholar]
  26. Hong H. J., Hutchings M. I., Neu J. M., Wright G. D., Paget M. S. B., Buttner M. J. 2004; Characterisation of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Mol Microbiol52:1107–1121[CrossRef]
    [Google Scholar]
  27. Huang J., Lih C. J., Pan K. H., Cohen S. N. 2001; Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev15:3183–3192[CrossRef]
    [Google Scholar]
  28. Hwang I., Chen H. C., Sheen J. 2002; Two-component signal transduction pathways in Arabidopsis. Plant Physiol129:500–515[CrossRef]
    [Google Scholar]
  29. Ishizuka H., Horinouchi S., Kieser H. M., Hopwood D. A., Beppu T. 1992; A putative two-component regulatory system involved in secondary metabolism in Streptomyces spp.. J Bacteriol23:7585–7594
    [Google Scholar]
  30. Janssen G. R. 1993; Eubacterial, archaebacterial and eukaryotic genes that encode leaderless mRNA. In Industrial Microorganisms: Basic and Applied Molecular Genetics pp.59–67 Edited by Baltz R. H., Hegeman G. D., Skatrud P. L.. Washington DC: American Society for Microbiology;
    [Google Scholar]
  31. Jung K., Altendorf K. 2003; Stimulus perception and signal transduction by the KdpD/KdpE system of Escherichia coli. Regulatory Networks in Prokaryotes Edited by Durre P., Friedrich B.. Hethersett, Norwich, UK: Horizon Press;
    [Google Scholar]
  32. Keijser B. J. F., van Wezel G. P., Canters G. W., Vijgenboom E. 2002; Developmental regulation of the Streptomyces lividans ram genes: involvement of RamR in regulation of the ramCSAB operon. J Bacteriol184:4420–4429[CrossRef]
    [Google Scholar]
  33. Kim D., Forst S. 2001; Genomic analysis of the histidine kinase family in bacteria and archaea. Microbiology147:1197–1212
    [Google Scholar]
  34. Levit M., Liu Y., Surette M., Stock J. 1996; Active site interference and asymmetric activation in the chemotaxis protein histidine kinase CheA. J Biol Chem271:32057–32063[CrossRef]
    [Google Scholar]
  35. Li Y. Q., Chen P. L., Chen S. F., Wu D., Zheng J. 2004; A pair of two-component regulatory genes ecrA1/A2 inS. coelicolor. J Zhejiang Univ Sci5:173–179[CrossRef]
    [Google Scholar]
  36. Martin P. K., Li T., Sun D., Biek D. P., Schmid M. B. 1999; Role in cell permeability of an essential two-component system in Staphylococcus aureus. J Bacteriol181:3666–3673
    [Google Scholar]
  37. Mascher T., Margulis N. G., Wang T., Ye R. W., Helmann J. D. 2003; Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol50:1591–1604[CrossRef]
    [Google Scholar]
  38. Molle V., Buttner M. J. 2000; Different alleles of the response regulator gene bldM arrest Streptomyces coelicolor development at distinct stages. Mol Microbiol36:1265–1278
    [Google Scholar]
  39. Moore J. B., Shiau S.-P., Reitzer L. J. 1993; Alterations of highly conserved residues in the regulatory domain of nitrogen regulator I (NtrC) of Escherichia coli. J Bacteriol175:2692–2701
    [Google Scholar]
  40. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. 1995; SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol247:536–540
    [Google Scholar]
  41. Nguyen K. T., Willey J. M., Nguyen L. D., Nguyen L. T., Viollier P. H., Thompson C. J. 2002; A central regulator of morphological differentiation in the multicellular bacterium Streptomyces coelicolor. Mol Microbiol46:1223–1238[CrossRef]
    [Google Scholar]
  42. O'Connor T. J., Kanellis P., Nodwell J. R. 2002; The ramC gene is required for morphogenesis in Streptomyces coelicolor and expressed in a cell type-specific manner under the direct control of RamR. Mol Microbiol45:45–57[CrossRef]
    [Google Scholar]
  43. Ogino T., Matsubara M., Kato N., Nakamura Y., Mizuno T. 1998; An Escherichia coli protein that exhibits phosphohistidine phosphatase activity towards the HPt domain of the ArcB sensor involved in the multistep His-Asp phosphorelay. Mol Microbiol27:573–585[CrossRef]
    [Google Scholar]
  44. Otten S. L., Ferguson J., Hutchinson C. R. 1995; Regulation of daunorubicin production in Streptomyces peucetius by the dnrR2 locus. J Bacteriol177:1216–1224
    [Google Scholar]
  45. Paget M. S., Leibovitz E., Buttner M. J. 1999; A putative two-component signal transduction system regulates sigma E, a sigma factor required for normal cell wall integrity in Streptomyces coelicolor A3(2). Mol Microbiol33:97–107[CrossRef]
    [Google Scholar]
  46. Parkinson J. S. 2003; Bacterial chemotaxis: a new player in response regulator dephosphorylation. J Bacteriol185:1492–1494[CrossRef]
    [Google Scholar]
  47. Perego M. 2001; A new family of aspartyl phosphate phosphatases targeting the sporulation transcription factor Spo0A of Bacillus subtilis. Mol Microbiol42:133–143
    [Google Scholar]
  48. Perez E., Samper S., Bordas Y., Guilhot C., Gicquel B., Martin C. 2001; An essential role for phoP in Mycobacterium tuberculosis virulence. Mol Microbiol41:179–187[CrossRef]
    [Google Scholar]
  49. Pootoolal J., Thomas M. G., Marshall C. G., Neu J. M., Hubbard B. K., Walsh C. T., Wright G. D. 2002; Assembling the glycopeptide antibiotic scaffold: the biosynthesis of A47934 from Streptomyces toyocaensis NRRL15009. Proc Natl Acad Sci U S A25:8962–8967
    [Google Scholar]
  50. Reyrat J.-M., David M., Batut J., Boistard P. 1994; FixL of Rhizobium meliloti enhances the transcriptional activity of a mutant FixJD54N protein by phosphorylation on an alternative residue. J Bacteriol176:1969–1976
    [Google Scholar]
  51. Rohrer S., Berger-Bachi B. 2003; FemABX peptidyl transferases: a link between branched-chain cell wall peptide formation and beta-lactam resistance in gram-positive cocci. Antimicrob Agents Chemother47:837–846[CrossRef]
    [Google Scholar]
  52. Shi L., Hulett F. M. 1999; The cytoplasmic kinase domain of PhoR is sufficient for the low phosphate-inducible expression of pho regulon genes in Bacillus subtilis. Mol Microbiol31:211–222[CrossRef]
    [Google Scholar]
  53. Sola-Landa A., Moura R. S., Martin J. F. 2003; The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci U S A100:6133–6138[CrossRef]
    [Google Scholar]
  54. Steyn A. J., Joseph J., Bloom B. R. 2003; Interaction of the sensor module of Mycobacterium tuberculosis H37Rv KdpD with members of the Lpr family. Mol Microbiol47:1075–1089[CrossRef]
    [Google Scholar]
  55. Stover C. K., Pham X. Q., Erwin A. L. & 28 other authors. 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature406:959–964[CrossRef]
    [Google Scholar]
  56. Tao W., Malone C. L., Ault A. D., Deschenes R. J., Fassler J. S. 2002; A cytoplasmic coiled-coil domain is required for histidine kinase activity of the yeast osmosensor, SLN1. Mol Microbiol43:459–473[CrossRef]
    [Google Scholar]
  57. Taylor B. L., Zhulin I. B. 1999; PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev63:479–506
    [Google Scholar]
  58. Thomason P., Kay R. 2000; Eukaryotic signal transduction via histidine-aspartate phosphorelay. J Cell Sci113:3141–3150
    [Google Scholar]
  59. Tseng H. C., Chen C. W. 1991; A cloned ompR-like gene of Streptomyces lividans 66 suppresses defective melC1, a putative copper-transfer gene. Mol Microbiol5:1187–1196[CrossRef]
    [Google Scholar]
  60. Tsujibo H., Hatano N., Okamoto T., Endo H., Miyamoto K., Inamori Y. 1999; Synthesis of chitinase in Streptomyces thermoviolaceus is regulated by a two-component sensor-regulator system. FEMS Microbiol Lett181:83–90[CrossRef]
    [Google Scholar]
  61. Ueda K., Hsheh C.-W., Tosaki H., Shinkawa H., Beppu T., Horinouchi S. 1993; A gene cluster involved in aerial mycelium formation in Streptomyces griseus encodes proteins similar to response regulators of two-component regulatory systems and membrane translocators. J Bacteriol175:2006–2016
    [Google Scholar]
  62. Wang L., Grau R., Perego M., Hoch J. A. 1997; A novel histidine kinase inhibitor regulating development in Bacillus subtilis. Genes Dev11:2569–2579[CrossRef]
    [Google Scholar]
  63. Wolanin P. M., Thomason P. A., Stock J. R. 2002; Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol25:3013
    [Google Scholar]
  64. Wood J. M. 1999; Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev63:230–262
    [Google Scholar]
  65. Wray L. V., Fisher S. H. 1991; Identification and cloning of the glnR locus, which is required for transcription of theglnA gene in Streptomyces coelicolor. J Bacteriol173:7351–7360
    [Google Scholar]
  66. Zhou L., Lei X. H., Bochner B. R., Wanner B. L. 2003; Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. J Bacteriol185:4956–4972[CrossRef]
    [Google Scholar]
  67. Zhulin I. B., Taylor B. L., Dixon R. 1997; PAS domain S-boxes in archaea, bacteria and sensors for oxygen and redox. Trends Biochem Sci22:331–333[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27181-0
Loading
/content/journal/micro/10.1099/mic.0.27181-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error