1887

Abstract

Kre1p is a cell surface -glycoprotein involved in a late stage of 1,6--glucan formation in the yeast . Disruption of leads to a 40 % reduction in the overall 1,6--glucan content of the cell wall. This paper shows that in a yeast Δ null mutant, neither an N-terminal-truncated Kre1p nor Kre1p variants lacking a C-terminal glycosylphospatidylinositol (GPI) attachment site are capable of achieving normal function in glucan assembly, while full-length Kre1p completely complements a Δ null mutation and restores cell wall 1,6--glucan content up to wild-type level. In a yeast mutant, a green-fluorescent-protein-tagged Kre1p derivative is secreted into the medium, indicating an at least transient GPI-anchoring stage of Kre1p during its processing within the yeast secretory pathway. In contrast to the severe defect in cell wall --glucan, the amount of cell wall mannoproteins is not significantly decreased in a Δ disruptant, as could be confirmed in competition assays by investigating toxin binding to isolated cell wall mannoproteins. Since the yeast Δ mutant differed in its sensitivity to zygocin and K28, two killer viral protein toxins that use different cell wall mannoprotein populations as a primary toxin receptor, it can be concluded that in a yeast Δ background, mannoproteins do not differ significantly in total amount from a Kre1 wild-type but rather in their expression and distribution at the cell surface. Taken together, these data favour and suggest a structural, rather than enzymic, function of Kre1p in yeast cell wall assembly.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27175-0
2004-10-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/10/mic1503209.html?itemId=/content/journal/micro/10.1099/mic.0.27175-0&mimeType=html&fmt=ahah

References

  1. Boone, C., Sommer, S. S., Hensel, A. & Bussey, H. ( 1990; ). Yeast KRE genes provide evidence for a pathway of cell wall beta-glucan assembly. J Cell Biol 110, 1833–1843.[CrossRef]
    [Google Scholar]
  2. Boone, C., Sdicu, A., Laroche, M. & Bussey, H. ( 1991; ). Isolation from Candida albicans of a functional homolog of the Saccharomyces cerevisiae KRE1 gene, which is involved in cell wall beta-glucan synthesis. J Bacteriol 173, 6859–6864.
    [Google Scholar]
  3. Breinig, F., Tipper, D. J. & Schmitt, M. J. ( 2002; ). Kre1p, the plasma membrane receptor for the yeast K1 viral toxin. Cell 108, 395–405.[CrossRef]
    [Google Scholar]
  4. Brown, J. L., Kossaczka, Z., Jiang, B. & Bussey, H. ( 1993; ). A mutational analysis of killer toxin resistance in Saccharomyces cerevisiae identifies new genes involved in cell wall (1→6)-beta-glucan synthesis. Genetics 133, 837–849.
    [Google Scholar]
  5. Caro, L. H. P., Tettelin, H., Vossen, J. H., Ram, A. F. J., van den Ende, H. & Klis, F. M. ( 1997; ). In silico identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13, 1477–1489.[CrossRef]
    [Google Scholar]
  6. Cid, V. J., Duran, A., del Rey, F., Snyder, M. P., Nombela, C. & Sanchez, M. ( 1995; ). Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59, 345–386.
    [Google Scholar]
  7. De Groot, P. W. J., Hellingwerf, K. J. & Klis, F. M. ( 2003; ). Genome-wide identification of fungal GPI proteins. Yeast 20, 781–796.[CrossRef]
    [Google Scholar]
  8. De Sampaio, G., Bourdineaud, J. P. & Lauquin, G. J. M. ( 1999; ). A constitutive role for GPI anchors in Saccharomyces cerevisiae: cell wall targeting. Mol Microbiol 34, 247–256.[CrossRef]
    [Google Scholar]
  9. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. ( 1956; ). Colorimetric method for determination of sugars and related substances. Anal Chem 28, 350–356.[CrossRef]
    [Google Scholar]
  10. Eisfeld, K., Riffer, F., Mentges, J. & Schmitt, M. J. ( 2000; ). Endocytotic uptake and retrograde transport of a virally encoded killer toxin in yeast. Mol Microbiol 37, 926–940.[CrossRef]
    [Google Scholar]
  11. Hutchins, K. ( 1982; ). Yeast cell wall receptor for killer toxin, pp. 46–50. MSc thesis, Department of Biology, McGill University, Montreal, Canada. [Cited in Boone et al. (1990) . J Cell Biol 110, 1833–1843.]
  12. Hutchins, K. & Bussey, H. ( 1983; ). Cell wall receptor for yeast killer toxin: involvement of (1→6)-beta-d-glucan. J Bacteriol 154, 161–169.
    [Google Scholar]
  13. Ito, H., Fukuda, Y., Murata, K. & Kimura, A. ( 1983; ). Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153, 163–168.
    [Google Scholar]
  14. Kapteyn, J. C., Montijn, R. C., Vink, E., de la Cruz, J., Llobell, A., Douwes, J. E., Shimoi, H., Lipke, P. N. & Klis, F. M. ( 1996; ). Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked beta-1,3-/beta-1,6-glucan heteropolymer. Glycobiology 6, 337–345.[CrossRef]
    [Google Scholar]
  15. Kapteyn, J. C., Ram, A. F., Groos, E. M., Kollar, R., Montijn, R. C., Van Den Ende, H., Llobell, A., Cabib, E. & Klis, F. M. ( 1997; ). Altered extent of cross-linking of beta1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall beta1,3-glucan content. J Bacteriol 179, 6279–6284.
    [Google Scholar]
  16. Kollar, R., Reinhold, B. B., Petrakova, E., Yeh, H. J., Ashwell, G., Drgonova, J., Kapteyn, J. C., Klis, F. M. & Cabib, E. ( 1997; ). Architecture of the yeast cell wall. Beta(1→6)-glucan interconnects mannoprotein, beta(1→)3-glucan, and chitin. J Biol Chem 272, 17762–17775.[CrossRef]
    [Google Scholar]
  17. Leidich, S. D. & Orlean, P. ( 1996; ). Gpi1, a Saccharomyces cerevisiae protein that participates in the first step in glycosylphosphatidylinositol anchor synthesis. J Biol Chem 271, 27829–27837.[CrossRef]
    [Google Scholar]
  18. Leidich, S. D., Drapp, D. A. & Orlean, P. ( 1994; ). A conditionally lethal yeast mutant blocked at the first step in glycosyl phosphatidylinositol anchor synthesis. J Biol Chem 269, 10193–10196.
    [Google Scholar]
  19. Leidich, S. D., Kostova, Z., Latek, R. R., Costello, L. C., Drapp, D. A., Gray, W., Fassler, J. S. & Orlean, P. ( 1995; ). Temperature-sensitive yeast GPI anchoring mutants gpi2 and gpi3 are defective in the synthesis of N-acetylglucosaminyl phosphatidylinositol. J Biol Chem 270, 13029–13035.[CrossRef]
    [Google Scholar]
  20. Lloyd, K. O. ( 1970; ). Isolation, characterization, and partial structure of peptidogalactomannans from the yeast form of Cladosporium werneckii. Biochemistry 9, 3446–3453.[CrossRef]
    [Google Scholar]
  21. Lu, C. F., Montijn, R. C., Brown, J. L., Klis, F., Kurjan, J., Bussey, H. & Lipke, P. N. ( 1995; ). Glycosyl phosphatidylinositol-dependent cross-linking of alpha-agglutinin and beta 1,6-glucan in the Saccharomyces cerevisiae cell wall. J Cell Biol 128, 333–340.[CrossRef]
    [Google Scholar]
  22. Montijn, R. C., Vink, E., Muller, W. H., Verkleij, A. J., van den Ende, H., Henrissat, B. & Klis, F. M. ( 1999; ). Localization of synthesis of beta-1,6-glucan in Saccharomyces cerevisiae. J Bacteriol 181, 7414–7420.
    [Google Scholar]
  23. Nakajima, T. & Ballou, C. E. ( 1974a; ). Structure of the linkage region between the polysaccharide and protein parts of Saccharomyces cerevisiae mannan. J Biol Chem 249, 7685–7694.
    [Google Scholar]
  24. Nakajima, T. & Ballou, C. E. ( 1974b; ). Characterization of the carbohydrate fragments obtained from Saccharomyces cerevisiae mannan by alkaline degradation. J Biol Chem 249, 7679–7684.
    [Google Scholar]
  25. Pfeiffer, P. & Radler, F. ( 1982; ). Purification and characterization of extracellular and intracellular killer toxin of Saccharomyces cerevisiae strain 28. J Gen Microbiol 128, 2699–2706.
    [Google Scholar]
  26. Radler, F., Herzberger, S., Schönig, I. & Schwarz, P. ( 1993; ). Investigation of a killer strain of Zygosaccharomyces bailii. J Gen Microbiol 139, 495–500.[CrossRef]
    [Google Scholar]
  27. Ram, A. F., Kapteyn, J. C., Montijn, R. C., Caro, L. H., Douwes, J. E., Baginsky, W., Mazur, P., van den Ende, H. & Klis, F. M. ( 1998; ). Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of beta1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J Bacteriol 180, 1418–1424.
    [Google Scholar]
  28. Roemer, T. & Bussey, H. ( 1995; ). Yeast Kre1p is a cell surface O-glycoprotein. Mol Gen Genet 249, 209–216.[CrossRef]
    [Google Scholar]
  29. Sambrook, J., Fritsch, M. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  30. Schagger, H. & von Jagow, G. ( 1987; ). Tricin-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166, 368–379.[CrossRef]
    [Google Scholar]
  31. Schmitt, M. & Radler, F. ( 1987; ). Mannoprotein of the yeast cell wall as primary receptor for the killer toxin of Saccharomyces cerevisiae strain 28. J Gen Microbiol 133, 3347–3354.
    [Google Scholar]
  32. Schmitt, M. & Radler, F. ( 1988; ). Molecular structure of the cell wall receptor for killer toxin KT28 in Saccharomyces cerevisiae. J Bacteriol 170, 2192–2196.
    [Google Scholar]
  33. Schmitt, M. J. & Breinig, F. ( 2002; ). The viral killer system in yeast: from molecular biology to application. FEMS Microbiol Rev 26, 257–276.[CrossRef]
    [Google Scholar]
  34. Schmitt, M. J. & Compain, P. ( 1995; ). Killer-toxin-resistant kre12 mutants of Saccharomyces cerevisiae: genetic and biochemical evidence for a secondary K1 membrane receptor. Arch Microbiol 164, 435–443.[CrossRef]
    [Google Scholar]
  35. Schmitt, M. J. & Eisfeld, K. ( 1999; ). ‘Killer’ viruses in Saccharomyces cerevisiae and their general importance in understanding eukaryotic cell biology. Recent Res Dev Virol 1, 525–545.
    [Google Scholar]
  36. Schmitt, M. J. & Tipper, D. J. ( 1990; ). K28, a unique double-stranded RNA killer virus of Saccharomyces cerevisiae. Mol Cell Biol 10, 4807–4815.
    [Google Scholar]
  37. Schmitt, M. J. & Tipper, D. J. ( 1995; ). Sequence of the M28 dsRNA: preprotoxin is processed to an α/β heterodimeric protein toxin. Virology 213, 341–351.[CrossRef]
    [Google Scholar]
  38. Terashima, H., Hamada, K. & Kitada, K. ( 2003; ). The localization change of Ybr078w/Ecm33, a yeast GPI-associated protein, from the plasma membrane to the cell wall, affecting the cellular function. FEMS Microbiol Lett 218, 175–180.[CrossRef]
    [Google Scholar]
  39. Tipper, D. J. & Schmitt, M. J. ( 1991; ). Yeast dsRNA viruses: replication and killer phenotypes. Mol Microbiol 5, 2331–2338.[CrossRef]
    [Google Scholar]
  40. van der Vaart, J. M., van Schagen, F. S., Mooren, A. T., Chapman, J. W., Klis, F. M. & Verrips, C. T. ( 1996; ). The retention mechanism of cell wall proteins in Saccharomyces cerevisiae. Wall-bound Cwp2p is beta-1,6-glucosylated. Biochim Biophys Acta 1291, 206–214.[CrossRef]
    [Google Scholar]
  41. Weiler, F. & Schmitt, M. J. ( 2003; ). Zygocin, a secreted antifugal toxin of the yeast Zygosaccharomyces bailii and its effect on sensitive fungal cells. FEMS Yeast Res 3, 69–76.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27175-0
Loading
/content/journal/micro/10.1099/mic.0.27175-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error