1887

Abstract

The gene was identified by homology to the orthologue and encodes a predicted 1655 amino acid protein. In most cell-wall chitin is associated with primary septum formation and Bni4p is involved in tethering the Chs3p chitin synthase enzyme to the mother-bud neck by forming a bridge between a regulatory protein Chs4p and the septin Cdc10p. Bni4p shows 20 % overall identity to the Bni4p, with 73 % identity over the C-terminal 63 amino acids, which includes a putative protein phosphatase type 1 (PP1) binding domain. Northern blot analysis revealed a transcript of the expected size that was expressed in both yeast and hyphal growth forms. has more chitin in its cell wall than , and again most chitin is synthesized by Chs3p. The function of was investigated by performing a targeted gene disruption using the ‘Ura-blaster’ method to delete amino acids 1120–1611 that are essential for function. The resulting Δ/Δ null mutants formed lemon-shaped yeast cells and had a 30 % reduction in cell-wall chitin, reduced hyphal formation on solid serum-containing medium and increased sensitivity to SDS and increased resistance to Calcofluor White. The Δ/Δ null mutants were unaffected in chitin ring formation, but often exhibited displaced bud sites with more obvious but flattened birth scars. Therefore, unlike in , the mutant apparently alters chitin distribution throughout the cell wall and not exclusively at the bud-neck region.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27167-0
2004-10-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/10/mic1503243.html?itemId=/content/journal/micro/10.1099/mic.0.27167-0&mimeType=html&fmt=ahah

References

  1. Andrews, P. D. & Stark, M. J. ( 2000; ). Type 1 protein phosphatase is required for maintenance of cell wall integrity, morphogenesis and cell cycle progression in Saccharomyces cerevisiae. J Cell Sci 113, 507–520.
    [Google Scholar]
  2. Binley, K. M., Radcliffe, P. A., Trevethick, J., Duffy, K. A. & Sudbery, P. E. ( 1999; ). The yeast PRS3 gene is required for cell integrity, cell cycle arrest upon nutrient deprivation, ion homeostasis and the proper organization of the actin cytoskeleton. Yeast 14, 1459–1469.
    [Google Scholar]
  3. Brown, D. H., Jr, Giusani, A. D., Chen, X. & Kumamoto, C. A. ( 1999; ). Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol Microbiol 34, 651–662.[CrossRef]
    [Google Scholar]
  4. Bulawa, C. E., Slater, M., Cabib, E., Au-Young, J., Sburlati, A., Adair, W. L. & Robbins, P. W. ( 1986; ). The S. cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo. Cell 46, 213–225.[CrossRef]
    [Google Scholar]
  5. Bulawa, C. E., Miller, D. W., Henry, L. K. & Becker, J. M. ( 1995; ). Attenuated virulence of chitin-deficient mutants of Candida albicans. Proc Natl Acad Sci U S A 92, 10570–10574.[CrossRef]
    [Google Scholar]
  6. Cassola, A., Parrot, M., Silberstein, S., Magee, B. B., Passerson, S., Giasson, L. & Cantore, M. L. ( 2004; ). Candida albicans lacking the gene encoding the regulatory subunit of protein kinase A displays a defect in hyphal formation and an altered localization of the catalytic subunit. Eukaryot Cell 3, 190–199.[CrossRef]
    [Google Scholar]
  7. DeMarini, D. J., Adams, A. E. M., Fares, H., De Virgilio, C., Valle, G., Chuang, J. S. & Pringle, J. R. ( 1997; ). A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. J Cell Biol 139, 75–93.[CrossRef]
    [Google Scholar]
  8. Di Domenico, B. J., Lupisella, J., Sandbaken, M. & Chakraburtty, K. ( 1992; ). Isolation and sequence analysis of the gene encoding translation elongation factor 3 from Candida albicans. Yeast 8, 337–352.[CrossRef]
    [Google Scholar]
  9. Di Domenico, B. J., Brown, N. H., Lupisella, J., Greene, J. R., Yanko, M. & Koltin, Y. ( 1994; ). Homologues of the yeast neck filament associated genes: isolation and sequence analysis of Candida albicans CDC3 and CDC10. Mol Gen Genet 242, 689–698.
    [Google Scholar]
  10. Egloff, M. P., Johnson, D. F., Moorhead, G., Cohen, P. T., Cohen, P. & Barford, D. ( 1997; ). Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J 16, 1876–1887.[CrossRef]
    [Google Scholar]
  11. Fonzi, W. A. & Irwin, M. Y. ( 1993; ). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717–728.
    [Google Scholar]
  12. Gale, C. A., Bendel, C. M., McClellan, M., Hauser, M., Becker, J. M., Berman, J. & Hostetter, M. K. ( 1998; ). Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279, 1355–1358.[CrossRef]
    [Google Scholar]
  13. Gow, N. A. R., Robbins, P. W., Lester, J. W., Brown, A. J., Fonzi, W. A., Chapman, T. & Kinsman, O. S. ( 1994; ). A hyphal-specific chitin synthase gene (CHS2) is not essential for growth, dimorphism, or virulence of Candida albicans. Proc Natl Acad Sci U S A 91, 6216–6220.[CrossRef]
    [Google Scholar]
  14. Kapteyn, J. C., Hoyer, L. L., Hecht, J. E. & 6 other authors ( 2000; ). The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 35, 601–611.
    [Google Scholar]
  15. Kinoshita, M. ( 2003; ). The septins. Genome Biol 4, 236 (doi:10.1186/gb-2003-4-11-236).[CrossRef]
    [Google Scholar]
  16. Kozubowski, L., Panek, H., Rosenthal, A., Bloecher, A., DeMarini, D. J. & Tatchell, K. ( 2003; ). A Bni4-Glc7 phosphatase complex that recruits chitin synthase to the site of bud emergence. Mol Biol Cell 14, 26–39.[CrossRef]
    [Google Scholar]
  17. Lee, K. L., Buckley, H. R. & Campbell, H. R. ( 1975; ). An amino acid liquid synthetic medium for development of mycelial and yeast forms of C. albicans. Sabouraudia 13, 148–153.[CrossRef]
    [Google Scholar]
  18. Lippincott, J., Shannon, K. B., Shou, W., Deshaies, R. J. & Li, R. ( 2001; ). The TEM1 small GTPase controls actomyosin and septin dynamics during cytokinesis. J Cell Sci 114, 1379–1386.
    [Google Scholar]
  19. Longtine, M. S., DeMarini, D. J., Valencik, M. L., Al-Awar, O. S., Fares, H., De Virgilio, C. & Pringle, J. R. ( 1996; ). The septins: roles in cytokinesis and other processes. Curr Opin Cell Biol 8, 106–119.[CrossRef]
    [Google Scholar]
  20. Mellado, E., Specht, C. A., Robbins, P. W. & Holden, D. W. ( 1996; ). Cloning and characterization of chsD, a chitin synthase-like gene of Aspergillus fumigatus. FEMS Lett 143, 69–76.[CrossRef]
    [Google Scholar]
  21. Munro, C. A. & Gow, N. A. R. ( 2001; ). Chitin synthesis in human pathogenic fungi. Med Mycol 39S, 41–54.
    [Google Scholar]
  22. Munro, C. A., Schofield, D. A., Gooday, G. W. & Gow, N. A. R. ( 1998; ). Regulation of chitin synthesis during dimorphic growth of Candida albicans. Microbiology 144, 391–401.[CrossRef]
    [Google Scholar]
  23. Munro, C. A., Winter, K., Buchan, A., Henry, K., Becker, J. M., Brown, A. J., Bulawa, C. E. & Gow, N. A. R. ( 2001; ). Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol Microbiol 39, 1414–1426.
    [Google Scholar]
  24. Munro, C. A., Whitton, R. K., Hughes, H. B., Rella, M., Selvaggini, S. & Gow, N. A. R. ( 2003; ). CHS8-a fourth chitin synthase gene of Candida albicans contributes to in vitro chitin synthase activity, but is dispensable for growth. Fungal Gen Biol 40, 146–158.[CrossRef]
    [Google Scholar]
  25. Navarro-Garcia, F., Sanchez, M., Pla, J. & Nombela, C. ( 1995; ). Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol Cell Biol 15, 2197–2206.
    [Google Scholar]
  26. Ono, N., Yabe, T., Sudoh, M., Nakajima, T., Yamada-Okabe, T., Arisawa, M. & Yamada-Okabe, H. ( 2000; ). The yeast Chs4 protein stimulates the trypsin-sensitive activity of chitin synthase 3 through an apparent protein-protein interaction. Microbiology 146, 385–391.
    [Google Scholar]
  27. Rodriguez-Pena, J. M., Rodriguez, C., Alvarez, A., Nombela, C. & Arroyo, J. ( 2002; ). Mechanisms for targeting of the Saccharomyces cerevisiae GPI-anchored cell wall protein Crh2p to polarised growth sites. J Cell Sci 115, 2549–2558.
    [Google Scholar]
  28. Roncero, C. ( 2002; ). The genetic complexity of chitin synthesis in fungi. Curr Genet 41, 367–378.[CrossRef]
    [Google Scholar]
  29. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef]
    [Google Scholar]
  30. Sanglard, D., Hube, B., Monod, M., Odds, F. C. & Gow, N. A. R. ( 1997; ). A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 65, 3539–3546.
    [Google Scholar]
  31. Santos, B. & Snyder, M. ( 2003; ). Specific protein targeting during cell differentiation: polarized localization of Fus1p during mating depends on Chs5p in Saccharomyces cerevisiae. Eukaryot Cell 2, 821–825.[CrossRef]
    [Google Scholar]
  32. Santos, B., Duran, A. & Valdivieso, M. H. ( 1997; ). CHS5, a gene involved in chitin synthesis and mating in Saccharomyces cerevisiae. Mol Cell Biol 17, 2485–2496.
    [Google Scholar]
  33. Sudbery, P. E. ( 2001; ). The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localization. Mol Microbiol 41, 19–31.[CrossRef]
    [Google Scholar]
  34. Sudoh, M., Tatsuno, K., Ono, N., Ohta, A., Chibana, H., Yamada-Okabe, H. & Arisawa, M. ( 1999; ). The Candida albicans CHS4 gene complements a Saccharomyces cerevisiae skt5/chs4 mutation and is involved in chitin biosynthesis. Microbiology 145, 1613–1622.[CrossRef]
    [Google Scholar]
  35. Timpel, C., Strahl-Bolsinger, S., Ziegelbauer, K. & Ernst, J. F. ( 1998; ). Multiple functions of Pmt1p-mediated protein O-mannosylation in the fungal pathogen Candida albicans. J Biol Chem 273, 20837–20846.[CrossRef]
    [Google Scholar]
  36. Timpel, C., Zink, S., Strahl-Bolsinger, S., Schroppel, K. & Ernst, J. ( 2000; ). Morphogenesis, adhesive properties, and antifungal resistance depend on the Pmt6 protein mannosyltransferase in the fungal pathogen Candida albicans. J Bacteriol 182, 3063–3071.[CrossRef]
    [Google Scholar]
  37. Trilla, J. A., Cos, T., Duran, A. & Roncero, C. ( 1997; ). Characterization of CHS4 (CAL2), a gene of Saccharomyces cerevisiae involved in chitin biosynthesis and allelic to SKT5 and CSD4. Yeast 13, 795–807.[CrossRef]
    [Google Scholar]
  38. Trilla, J. A., Duran, A. & Roncero, C. ( 1999; ). Chs7p, a new protein involved in the control of protein export from the endoplasmic reticulum that is specifically engaged in the regulation of chitin synthesis in Saccharomyces cerevisiae. J Cell Biol 145, 1153–1163.[CrossRef]
    [Google Scholar]
  39. Tsuchimori, N., Sharkey, L. L., Fonzi, W. A., French, S. W., Edwards, J. E., Jr & Filler, S. G. ( 2000; ). Reduced virulence of HWP1-deficient mutants of Candida albicans and their interactions with host cells. Infect Immun 68, 1997–2002.[CrossRef]
    [Google Scholar]
  40. Uetz, P., Giot, L., Cagney, G. & 16 other authors ( 2000; ). A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627.[CrossRef]
    [Google Scholar]
  41. Valdivia, R. H. & Schekman, R. ( 2003; ). The yeasts Rho1p and Pkc1p regulate the transport of chitin synthase III (Chs3p) from internal stores to the plasma membrane. Proc Natl Acad Sci U S A 100, 10287–10292.[CrossRef]
    [Google Scholar]
  42. Warenda, A. J. & Konopka, J. B. ( 2002; ). Septin function in Candida albicans morphogenesis. Mol Biol Cell 13, 2732–2746.[CrossRef]
    [Google Scholar]
  43. Warenda, A. J., Kauffman, S., Sherrill, T. P., Becker, J. M. & Konopka, J. B. ( 2003; ). Candida albicans septin mutants are defective for invasive growth and virulence. Infect Immun 71, 4045–4051.[CrossRef]
    [Google Scholar]
  44. Warit, S., Zhang, N., Short, A., Walmsley, R. M., Oliver, S. G. & Stateva, L. I. ( 2000; ). Glycosylation deficiency phenotypes resulting from depletion of GDP-mannose pyrophosphorylase in two yeast species. Mol Microbiol 36, 1156–1166.[CrossRef]
    [Google Scholar]
  45. Zaragoza, O., Rodriguez, C. & Gancedo, C. ( 2000; ). Isolation of MIG1 gene from Candida albicans and effects of its disruption on catabolite repression. J Bacteriol 182, 320–326.[CrossRef]
    [Google Scholar]
  46. Ziman, M., Chuang, J. S. & Schekman, R. W. ( 1996; ). Chs1p and Chs3p, two proteins involved in chitin synthesis, populate a compartment of the Saccharomyces cerevisiae endocytic pathway. Mol Biol Cell 7, 1909–1919.[CrossRef]
    [Google Scholar]
  47. Ziman, M., Chuang, J. S., Tsung, M., Hamamoto, S. & Schekman, R. ( 1998; ). Chs6p-dependent anterograde transport of Chs3p from the chitosome to the plasma membrane in Saccharomyces cerevisiae. Mol Biol Cell 9, 1565–1576.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27167-0
Loading
/content/journal/micro/10.1099/mic.0.27167-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error