1887

Abstract

Release of colicin A was studied in cells that differed in expressing the olicin ysis protein (Cal). Pools of released and unreleased colicin A were harvested throughout colicin A induction. The amount of colicin A in each pool varied with the time of induction, allowing the definition of two sequential steps in colicin A release, one of which was dependent on Cal. Each step of colicin A release was differently affected in cells containing Cal mutants in which the N-terminal cysteine residue was substituted by either proline or threonine, preventing them from being acylated and matured. These Cal mutants were only observed in cells, indicating that the DegP protease cleaved the unacylated precursor of Cal. Cal was found in the insoluble fraction of the pools of released and unreleased colicin A together with the hetero-oligomers of colicin A and porins (colicins Au). The biogenesis of colicins Au was studied in temperature-sensitive and strains and found to be Sec-independent, indicating that they are formed by newly synthesized colicin A binding to mature porins already incorporated in the outer membrane. Cal is a lipoprotein similar to VirB7, a constituent of the type IV secretion system. It would interact with colicins Au to constitute the colicin A export machinery.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27160-0
2004-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/11/mic1503867.html?itemId=/content/journal/micro/10.1099/mic.0.27160-0&mimeType=html&fmt=ahah

References

  1. Anderson L. B., Hertzel A. V., Das A. 1996; Agrobacterium tumefaciens VirB7 and VirB9 form a disulfide-linked protein complex. Proc Natl Acad Sci U S A 93:8889–8894 [CrossRef]
    [Google Scholar]
  2. Baron C., Thorstenson Y. R., Zambryski P. C. 1997; The lipoprotein VirB7 interacts with VirB9 in the membranes of Agrobacterium tumefaciens . J Bacteriol 179:1211–1218
    [Google Scholar]
  3. Baty D., Lazdunski C., Howard S. P, Lloubès R., Géli V. 1987; Extracellular release of colicin A is non-specific. EMBO J 6:2463–2468
    [Google Scholar]
  4. Berger B. R., Christie P. J. 1994; Genetic complementation analysis of the Agrobacterium tumefaciens virB operon: virB2 through virB11 are essential virulence genes. J Bacteriol 176:3646–3660
    [Google Scholar]
  5. Bernadac A. M., Gavioli M., Lazzaroni J.-C., Raina S., Lloubès R. 1998; Escherichia coli tol-pal mutants form outer membrane vesicles. J Bacteriol 180:4872–4878
    [Google Scholar]
  6. Beveridge T. J. 1999; Structures of gram-negative cell walls and their derived membrane vesicles. J Bacteriol 181:4725–4733
    [Google Scholar]
  7. Bouveret E., Rigal A., Lazdunski C., Benedetti H. 1998; Distinct regions of the colicin A translocation domain are involved in the interaction with TolA and TolB proteins upon import into Escherichia coli . Mol Microbiol 27:143–157 [CrossRef]
    [Google Scholar]
  8. Bouveret E., Journet L., Walburger A., Cascales E., Benedetti H., Lloubès R. 2002; Analysis of the Escherichia coli Tol-Pal and TonB systems by periplasmic production of Tol, TonB, colicin, or phage capsid soluble domains. Biochimie 84:413–421 [CrossRef]
    [Google Scholar]
  9. Cavard D. 1976; Sensitization of colicin K-treated bacteria by sodium dodecyl sulfate: presence of free colicin in colicin K-treated cultures of Escherichia coli . Antimicrob Agents Chemother 9:639–645 [CrossRef]
    [Google Scholar]
  10. Cavard D. 1991; Synthesis and functioning of the colicin E1 lysis protein: comparison with the colicin A lysis protein. J Bacteriol 173:191–196
    [Google Scholar]
  11. Cavard D. 1992; Colicin A and colicin E1 lysis proteins differ in their dependence on secA and secY gene products. FEBS Lett 298:84–88 [CrossRef]
    [Google Scholar]
  12. Cavard D. 2002; Assembly of colicin A in the outer membrane of producing Escherichia coli cells requires both phospholipase A and one porin, but phospholipase A is sufficient for secretion. J Bacteriol 184:3723–3733 [CrossRef]
    [Google Scholar]
  13. Cavard D., Bernadac A., Lazdunski C, Pagès J. M. 1984; Colicins are not transiently accumulated in the periplasmic space before release from colicinogenic cells. Biol Cell 51:79–86 [CrossRef]
    [Google Scholar]
  14. Cavard D., Baty D., Howard S. P., Verheij H. M., Lazdunski C. 1987; Lipoprotein nature of the colicin A lysis protein: effect of amino acid substitutions at the site of modification and processing. J Bacteriol 169:2187–2194
    [Google Scholar]
  15. Cavard D., Lazdunski C., Howard S. P. 1989; The acylated precursor form of the colicin A lysis protein is a natural substrate of the DegP protease. J Bacteriol 171:6316–6322
    [Google Scholar]
  16. Danese P. N., Silhavy T. 1998; Targeting and assembly of periplasmic and outer-membrane proteins in Escherichia coli . Annu Rev Genet 32:59–94 [CrossRef]
    [Google Scholar]
  17. Dekker N., Tommassen J., Verheij H. M. 1999; Bacteriocin release protein triggers dimerization of outer membrane phospholipase A in vivo . J Bacteriol 181:3281–3283
    [Google Scholar]
  18. Dover L. G., Evans L. J. A., Fridd S. L., Bainbridge G., Raggett E. M., Lakey J. H. 2000; Colicin pore-forming domains bind to Escherichia coli trimeric porins. Biochemistry 39:8632–8637 [CrossRef]
    [Google Scholar]
  19. Herschman H. R., Helinski D. R. 1967; Purification and characterization of colicin E2 and E3. J Biol Chem 242:5360–5368
    [Google Scholar]
  20. Howard S. P., Lindsay L. 1992; Structure/function relationships in the signal sequence of the colicin A lysis protein. In Bacteriocins, Microcins and Lantibiotics vol H65 pp 317–329 Edited by James R., Lazdunski C., Pattus F. NATO: ASI Series; Berlin, Heidelberg: Springer;
    [Google Scholar]
  21. Jakubowski S. J., Krishnamoorthy V., Christie P. J. 2003; Agrobacterium tumefaciens VirB6 protein participates in formation of VirB7 and VirB9 complexes required for type IV secretion. J Bacteriol 185:2867–2878 [CrossRef]
    [Google Scholar]
  22. Mulec J., Podlesek Z., Mrak P., Kopitar A., Ihan A., Zgur-Bertok D. 2003; A cka-gfp transcriptional fusion reveals that the colicin K activity gene is induced in only 3 percent of the population. J Bacteriol 185:654–659 [CrossRef]
    [Google Scholar]
  23. Oliver D. B., Cabelli R. J., Dolan K. M., Jarosik G. P. 1990; Azide-resistant mutants of Escherichia coli alter the SecA protein, an azide-sensitive component of the protein export machinery. Proc Natl Acad Sci U S A 87:8227–8231 [CrossRef]
    [Google Scholar]
  24. Pugsley A. P. 1993; The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 57:50–108
    [Google Scholar]
  25. Pugsley A. P., Schwartz M. 1984; Colicin E2 release: lysis, leakage or secretion? Possible role of a phospholipase. EMBO J 3:2393–2397
    [Google Scholar]
  26. Sagulenko V., Sagulenko E., Jakubowski S., Spudich E., Christie P. J. 2001; VirB7 lipoprotein is exocellular and associates with the Agrobacterium tumefaciens T pilus. J Bacteriol 183:3642–3651 [CrossRef]
    [Google Scholar]
  27. Schägger H., von Jagow F. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379 [CrossRef]
    [Google Scholar]
  28. Schwartz S. A., Helinski D. R. 1971; Purification and characterization of colicin E1. J Biol Chem 246:6318–6327
    [Google Scholar]
  29. Shirasu K., Morel P., Kado C. I. 1990; Characterization of the virB operon of an Agrobacterium tumefaciens Ti plasmid: nucleotide sequence and protein analysis. Mol Microbiol 4:1153–1163 [CrossRef]
    [Google Scholar]
  30. Soulié S., Moller J. V., Falson P., le Maire M. 1996; Urea reduces the aggregation of membrane proteins on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Anal Biochem 236:363–364 [CrossRef]
    [Google Scholar]
  31. Spudich G. M., Fernandez D., Zhou X.-R., Christie P. J. 1996; Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus. Proc Natl Acad Sci U S A 93:7512–7517 [CrossRef]
    [Google Scholar]
  32. van der Wal F. J., Luirink J., Oudega B. 1995; Bacteriocin release proteins: mode of action, structure and biotechnological application. FEMS Microbiol Rev 17:381–399 [CrossRef]
    [Google Scholar]
  33. Wai S. N., Lindmark B. 7 other authors Söderblom T. 2003; Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell 115:25–35 [CrossRef]
    [Google Scholar]
  34. White C. B., Chen Q., Kenyon G. L., Babbitt P. C. 1995; A novel activity of OmpT. Proteolysis under extreme denaturing conditions. J Biol Chem 270:12990–12994 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27160-0
Loading
/content/journal/micro/10.1099/mic.0.27160-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error