Characterization of the YxdJ response regulator as the inducer of expression for the cognate ABC transporter YxdLM Free

Abstract

The genome of , like those of some other AT-rich Gram-positive bacteria, has the uncommon feature of containing several copies of arrangements in which the genes encoding two-component and cognate ABC transporter systems are adjacent. As the function of one of these systems, the product of the locus, is still unknown, it was analysed further in order to get some clues on the physiological role of the gene products it encodes. The gene was shown to encode a DNA-binding protein that directly controls transcription of the neighbouring operon encoding the ABC transporter YxdLM. Primer extension and DNase protection experiments allowed precise definition of the transcription start and controlling region. Two putative direct repeats were identified that are proposed to be the YxdJ response regulator binding sites. Whole-cell transcriptome analyses revealed that the YxdJ regulon is extremely restricted. In addition to the operon, only a few genes involved in modifications of the bacterial cell wall were shown to be regulated by YxdJ.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27155-0
2004-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/8/mic1502609.html?itemId=/content/journal/micro/10.1099/mic.0.27155-0&mimeType=html&fmt=ahah

References

  1. Ames G. F. 1986; Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu Rev Biochem 55:397–425 [CrossRef]
    [Google Scholar]
  2. Anagnostopoulos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746
    [Google Scholar]
  3. Bernard R., Joseph P., Guiseppi A., Chippaux M., Denizot F. 2003; YtsD and YwoA, two independent systems that confer bacitracin resistance to Bacillus subtilis. FEMS Microbiol Lett 228:93–97 [CrossRef]
    [Google Scholar]
  4. Eraso J. M., Weinstock G. M. 1992; Anaerobic control of colicin E1 production. J Bacteriol 174:5101–5109
    [Google Scholar]
  5. Fabret C., Feher V. A., Hoch J. A. 1999; Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J Bacteriol 181:1975–1983
    [Google Scholar]
  6. Fukuchi K., Kasahara Y., Asai K., Kobayashi K., Moriya S., Ogasawara N. 2000; The essential two-component regulatory system encoded by yycF and yycG modulates expression of the ftsAZ operon in Bacillus subtilis. Microbiology 146:1573–1583
    [Google Scholar]
  7. Guzman L. M., Belin D., Carson M. J., Beckwith J. 1995; Tight regulation, modulation, and high-level expression by vectors containing the arabinose pBAD promoter. J Bacteriol 177:4121–4130
    [Google Scholar]
  8. Helmann J. D. 1995; Compilation and analysis of Bacillus subtilis sigma A-dependent promoter sequences: evidence for extended contact between RNA polymerase and upstream promoter DNA. Nucleic Acids Res 23:2351–2360 [CrossRef]
    [Google Scholar]
  9. Higgins C. F., Hiles I. D., Salmond G. P.8 other authors 1986; A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323:448–450 [CrossRef]
    [Google Scholar]
  10. Hulett F. M., Lee J., Shi L., Sun G., Chesnut R., Sharkova E., Duggan M. F., Kapp N. 1994; Sequential action of two-component genetic switches regulates the pho regulon in Bacillus subtilis. J Bacteriol 176:1348–1358
    [Google Scholar]
  11. Jarmer H., Larsen T. S., Krogh A., Saxild H. H., Brunak S., Knudsen S. 2001; Sigma A recognition sites in the Bacillus subtilis genome. Microbiology 147:2417–2424
    [Google Scholar]
  12. Joseph P., Fantino J. R., Herbaud M. L., Denizot F. 2001; Rapid orientated cloning in a shuttle vector allowing modulated gene expression in Bacillus subtilis. FEMS Microbiol Lett 205:91–97 [CrossRef]
    [Google Scholar]
  13. Joseph P., Fichant G., Quentin Y., Denizot F. 2002; Regulatory relationship of two-component and ABC transport systems and clustering of their genes in the Bacillus/Clostridium group suggest a functional link between them. J Mol Microbiol Biotechnol 5:503–513
    [Google Scholar]
  14. Kobayashi K., Ogura M., Yamaguchi H., Yoshida K., Ogasawara N., Tanaka T., Fujita Y. 2001; Comprehensive DNA microarray analysis of Bacillus subtilis two-component regulatory systems. J Bacteriol 183:7365–7370 [CrossRef]
    [Google Scholar]
  15. Kuroda M., Kuwahara-Arai K., Hiramatsu K. 2000; Identification of the up- and down-regulated genes in vancomycin-resistant Staphylococcus aureus strains Mu3 and Mu50 by cDNA differential hybridization method. Biochem Biophys Res Commun 269:485–490 [CrossRef]
    [Google Scholar]
  16. Makino K., Shinagawa H., Amemura M., Kimura S., Nakata A., Ishihama A. 1988; Regulation of the phosphate regulon of Escherichia coli. Activation of pstS transcription by PhoB protein in vitro. J Mol Biol 203:85–95 [CrossRef]
    [Google Scholar]
  17. Mascher T., Margulis N., Wang T., Ye R. W., Helmann J. D. 2003; Cell wall stress response in Bacillus subtilis: the regulatory network of the bacitracin regulon. Mol Microbiol 50:1591–1604 [CrossRef]
    [Google Scholar]
  18. Miller J. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  19. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6 [CrossRef]
    [Google Scholar]
  20. Ohki R., Giyanto, Tateno K., Masuyama W., Moriya S., Kobayashi K., Ogasawara N. 2003; The BceRS two-component regulatory system induces expression of the bacitracin transporter, BceAB, in Bacillus subtilis. Mol Microbiol 49:1135–1144 [CrossRef]
    [Google Scholar]
  21. Parkinson J. S., Kofoid E. C. 1992; Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71–112 [CrossRef]
    [Google Scholar]
  22. Perego M., Glaser P., Minutello A., Strauch M. A., Leopold K., Fischer W. 1995; Incorporation of d-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J Biol Chem 270:15598–15606 [CrossRef]
    [Google Scholar]
  23. Peschel A., Otto M., Jack R. W., Kalbacher H., Jung G., Gotz F. 1999; Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274:8405–8410 [CrossRef]
    [Google Scholar]
  24. Poyart C., Lamy M. C., Boumaila C., Fiedler F., Trieu-Cuot P. 2001; Regulation of d-alanyl-lipoteichoic acid biosynthesis in Streptococcus agalactiae involves a novel two-component regulatory system. J Bacteriol 183:6324–6334 [CrossRef]
    [Google Scholar]
  25. Poyart C., Pellegrini E., Marceau M., Baptista M., Jaubert F., Lamy M. C., Trieu-Cuot P. 2003; Attenuated virulence of Streptococcus agalactiae deficient in d-alanyl-lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells. Mol Microbiol 49:1615–1625 [CrossRef]
    [Google Scholar]
  26. Quentin Y., Fichant G., Denizot F. 1999; Inventory, assembly and analysis of Bacillus subtilis ABC transporter systems. J Mol Biol 287:467–484 [CrossRef]
    [Google Scholar]
  27. Rampersaud A., Norioka S., Inouye M. 1989; Characterization of OmpR binding sequences in the upstream region of the ompF promoter essential for transcriptional activation. J Biol Chem 264:18693–18700
    [Google Scholar]
  28. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  29. Spizizen J. 1958; Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci U S A 44:407–408
    [Google Scholar]
  30. Sun G., Birkey S. M., Hulett F. M. 1996; Three two-component signal-transduction systems interact for pho regulation in Bacillus subtilis. Mol Microbiol 19:941–948 [CrossRef]
    [Google Scholar]
  31. Tsuda H., Yamashita Y., Shibata Y., Nakano Y., Koga T. 2002; Genes involved in bacitracin resistance in Streptococcus mutans. Antimicrob Agents Chemother 46:3756–3764 [CrossRef]
    [Google Scholar]
  32. Tsung K., Brissette R. E., Inouye M. 1989; Identification of the DNA-binding domain of the OmpR protein required for transcriptional activation of the ompF and ompC genes of Escherichia coli by in vivo DNA footprinting. J Biol Chem 264:10104–10109
    [Google Scholar]
  33. Upton M., Tagg J. R., Wescombe P., Jenkinson H. F. 2001; Intra- and interspecies signaling between Streptococcus salivarius and Streptococcus pyogenes mediated by SalA and SalA1 lantibiotic peptides. J Bacteriol 183:3931–3938 [CrossRef]
    [Google Scholar]
  34. Wecke J., Madela K., Fischer W. 1997; The absence of d-alanine from lipoteichoic acid and wall techoic acid alters surface charge, enhances autolysis and increases susceptibility to methicillin in Bacillus subtilis. Microbiology 143:2953–2960 [CrossRef]
    [Google Scholar]
  35. Yoshida K., Ishio I., Nagakawa E., Yamamoto Y., Yamamoto M., Fujita Y. 2000; Systematic study of gene expression and transcription organization in the gntZ-ywaA region of the Bacillus subtilis genome. Microbiology 146:573–579
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27155-0
Loading
/content/journal/micro/10.1099/mic.0.27155-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed