HthA, a putative DNA-binding protein, and HthB are important for fruiting body morphogenesis in Free

Abstract

In response to starvation, initiates a developmental programme that results in the formation of spore-filled multicellular fruiting bodies. Fruiting body formation depends on the temporal and spatial coordination of aggregation and sporulation and involves temporally and spatially coordinated changes in gene expression. This paper reports the identification of two genes, and , that are important for fruiting body formation. and are co-transcribed, and transcription of the two genes decreases strongly during development. Loss of HthA and HthB function results in delayed aggregation, a reduction in the level of sporulation, and abnormal developmental gene expression. Extracellular complementation experiments showed that the developmental defects caused by loss of HthA and HthB function are not due to the inability to synthesize an intercellular signal required for fruiting body formation. HthA, independent of HthB, is required for aggregation. HthB, alone or in combination with HthA, is required for sporulation. HthA is predicted to contain a C-terminal helix–turn–helix DNA-binding domain. Intriguingly, the N-terminal part of HthA does not exhibit significant amino acid similarity to proteins in the databases. The HthB protein lacks homologues in the databases. The results suggest that HthA is a novel DNA-binding protein, which regulates transcription of genes important for aggregation, and that HthB, alone or in combination with HthA, stimulates sporulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27151-0
2004-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502171.html?itemId=/content/journal/micro/10.1099/mic.0.27151-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Meyers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Apelian D., Inouye S. 1990; Development-specific sigma-factor essential for late-stage differentiation of Myxococcus xanthus. Genes Dev 4:1396–1403 [CrossRef]
    [Google Scholar]
  3. Apelian D., Inouye S. 1993; A new putative sigma factor of Myxococcus xanthus. J Bacteriol 175:3335–3342
    [Google Scholar]
  4. Baikalov I., Kaczor-Grzeskowiak M., Grzeskowiak K., Gunsalus R. P., Dickerson R. E., Schröder I. 1996; Structure of the Escherichia coli response regulator NarL. Biochemistry 35:11053–11061 [CrossRef]
    [Google Scholar]
  5. Bibb M. J., Findlay P. R., Johnson M. W. 1984; The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene 30:157–166 [CrossRef]
    [Google Scholar]
  6. Brandner J. P., Kroos L. 1998; Identification of the omega4400 regulatory region, a developmental promoter of Myxococcus xanthus. J Bacteriol 180:1995–2004
    [Google Scholar]
  7. Caberoy N. B., Welch R. D., Jakobsen J. S., Slater S. C., Garza A. G. 2003; Global mutational analysis of NtrC-like activators in Myxococcus xanthus: identifying activator mutants defective for motility and fruiting body development. J Bacteriol 185:6083–6094 [CrossRef]
    [Google Scholar]
  8. Cheng Y., Kaiser D. 1989; dsg, a gene required for cell-cell interaction early in Myxococcus development. J Bacteriol 171:3719–3726
    [Google Scholar]
  9. Cole S. T., Raibaud O. 1986; The nucleotide sequence of the malT gene encoding the positive regulator of the Escherichia coli maltose regulon. Gene 42:201–208 [CrossRef]
    [Google Scholar]
  10. Downard J., Toal D. 1995; Branched-chain fatty acids: the case for a novel form of cell-cell signalling during Myxococcus xanthus development. Mol Microbiol 16:171–175 [CrossRef]
    [Google Scholar]
  11. Ducros V. M.-A., Lewis R. J., Verma C. S., Dodson E. J., Leonard G., Turkenburg J. P., Murshudov G. N., Wilkinson A. J., Brannigan J. A. 2001; Crystal structure of GerE, the ultimate transcriptional regulator of spore formation in Bacillus subtilis. J Mol Biol 306:759–771 [CrossRef]
    [Google Scholar]
  12. Dworkin M. 1996; Recent advances in the social and developmental biology of the myxobacteria. Microbiol Rev 60:70–102
    [Google Scholar]
  13. Ellehauge E., Nørregaard-Madsen M., Søgaard-Andersen L. 1998; The FruA signal transduction protein provides a checkpoint for the temporal co-ordination of intercellular signals in M. xanthus development. Mol Microbiol 30:807–817 [CrossRef]
    [Google Scholar]
  14. Fisseha M., Gloudemans M., Gill R. F., Kroos L. 1996; Characterization of the regulatory region of a cell interaction dependent gene in Myxococcus xanthus. J Bacteriol 178:2539–2550
    [Google Scholar]
  15. Fisseha M., Biran D., Kroos L. 1999; Identification of the omega4499 regulatory region controlling developmental expression of a Myxococcus xanthus cytochrome P-450 system. J Bacteriol 181:5467–5475
    [Google Scholar]
  16. Fuqua C., Parsek M. R., Greenberg E. P. 2001; Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468 [CrossRef]
    [Google Scholar]
  17. Garza A. G., Pollack J. S., Harris B. Z., Lee A., Keseler I. M., Licking E. F., Singer M. 1998; SdeK is required for early fruiting body development in Myxococcus xanthus. J Bacteriol 180:4628–4637
    [Google Scholar]
  18. Gill R. E., Cull M. G. 1986; Control of developmental gene expression by cell-to-cell interactions in Myxococcus xanthus. J Bacteriol 168:341–347
    [Google Scholar]
  19. Gronewold T. M. A., Kaiser D. 2001; The act operon controls the level and time of C-signal production for Myxococcus xanthus development. Mol Microbiol 40:744–756 [CrossRef]
    [Google Scholar]
  20. Gronewold T. M. A., Kaiser D. 2002; act operon control of developmental gene expression in Myxococcus xanthus. J Bacteriol 184:1172–1179 [CrossRef]
    [Google Scholar]
  21. Gulati P., Xu D., Kaplan H. B. 1995; Identification of the minimum regulatory region of a Myxococcus xanthus A-signal-dependent developmental gene. J Bacteriol 177:4645–4651
    [Google Scholar]
  22. Guo D., Wu Y., Kaplan H. B. 2000; Identification and characterization of genes required for early Myxococcus xanthus developmental gene expression. J Bacteriol 182:4564–4571 [CrossRef]
    [Google Scholar]
  23. Hager E., Tse H., Gill R. E. 2001; Identification and characterization of spdR mutations that bypass the BsgA protease-dependent regulation of developmental gene expression in Myxococcus xanthus. Mol Microbiol 39:765–780 [CrossRef]
    [Google Scholar]
  24. Hao T., Biran D., Velicer G. J., Kroos L. 2002; Identification of the omega-4514 regulatory region, a developmental promoter of Myxococcus xanthus that is transcribed in vitro by the major vegetative RNA polymerase. J Bacteriol 184:3348–3359 [CrossRef]
    [Google Scholar]
  25. Hodgkin J., Kaiser D. 1977; Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc Natl Acad Sci U S A 74:2938–2942 [CrossRef]
    [Google Scholar]
  26. Hodgkin J., Kaiser D. 1979a; Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): genes controlling movement of single cells. Mol Gen Genet 171:167–176 [CrossRef]
    [Google Scholar]
  27. Hodgkin J., Kaiser D. 1979b; Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): two gene systems control movement. Mol Gen Genet 171:177–191 [CrossRef]
    [Google Scholar]
  28. Horiuchi T., Taoka M., Isobe T., Komano T., Inouye S. 2002; Role of fruA and csgA genes in gene expression during development of Myxococcus xanthus. Analysis by two-dimensional gel electrophoresis. J Biol Chem 277:26753–26760 [CrossRef]
    [Google Scholar]
  29. Inouye M., Inouye S., Zusman D. R. 1979; Gene expression during development of Myxococcus xanthus: pattern of protein synthesis. Dev Biol 68:579–591 [CrossRef]
    [Google Scholar]
  30. Jelsbak L., Søgaard-Andersen L. 2003; Cell behavior and cell-cell communication during fruiting body morphogenesis in Myxococcus xanthus. J Microbiol Methods 55:829–839 [CrossRef]
    [Google Scholar]
  31. Julien B., Kaiser A. D., Garza A. 2000; Spatial control of cell differentiation in Myxococcus xanthus. Proc Natl Acad Sci U S A 97:9098–9103 [CrossRef]
    [Google Scholar]
  32. Kaiser D. 1979; Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci U S A 76:5952–5956 [CrossRef]
    [Google Scholar]
  33. Kashefi K., Hartzell P. L. 1995; Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF defect. Mol Microbiol 15:483–494 [CrossRef]
    [Google Scholar]
  34. Keseler I. M., Kaiser D. 1995; An early A-signal-dependent gene in Myxococcus xanthus has a sigma 54-like promoter. J Bacteriol 177:4638–4644
    [Google Scholar]
  35. Kroos L., Kaiser D. 1987; Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions. Genes & Dev 1:840–854 [CrossRef]
    [Google Scholar]
  36. Kroos L., Kuspa A., Kaiser D. 1986; A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev Biol 117:252–266 [CrossRef]
    [Google Scholar]
  37. Kroos L., Kuspa A., Kaiser D. 1990; Defects in fruiting body development caused by Tn5 lac insertions in Myxococcus xanthus. J Bacteriol 172:484–487
    [Google Scholar]
  38. Kuspa A., Kroos L., Kaiser D. 1986; Intercellular signaling is required for developmental gene expression in Myxococcus xanthus. Dev Biol 117:267–276 [CrossRef]
    [Google Scholar]
  39. Li S., Lee B.-U., Shimkets L. J. 1992; csgA expression entrains Myxococcus xanthus development. Genes Dev 6:401–410 [CrossRef]
    [Google Scholar]
  40. Nicholas K. B., Nicholas H. B., Deerfield D. W. Jr II 1997; Genedoc: analysis and visualization of genetic variation. EMBNEW.NEWS 4:14 () http://www.psc.edu/biomed/genedoc
    [Google Scholar]
  41. O'Connor K. A., Zusman D. R. 1991a; Development in Myxococcus xanthus involves differentiation into two cell types, peripheral rods and spores. J Bacteriol 173:3318–3333
    [Google Scholar]
  42. O'Connor K. A., Zusman D. R. 1991b; Behaviour of peripheral rods and their role in the life cycle of Myxococcus xanthus. J Bacteriol 173:3342–3355
    [Google Scholar]
  43. Ogawa M., Fujitani S., Mao X., Inouye S., Komano T. 1996; FruA, a putative transcription factor essential for the development of Myxococcus xanthus. Mol Microbiol 22:757–767 [CrossRef]
    [Google Scholar]
  44. Parkinson J. S., Kofoid E. C. 1992; Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71–112 [CrossRef]
    [Google Scholar]
  45. Plamann L., Davis J. M., Cantwell B., Mayor J. 1994; Evidence that asgB encodes a DNA-binding protein essential for growth and development of Myxococcus xanthus. J Bacteriol 176:2013–2020
    [Google Scholar]
  46. Pollack J. S., Singer M. 2001; SdeK, a histidine kinase required for Myxococcus xanthus development. J Bacteriol 183:3589–3596 [CrossRef]
    [Google Scholar]
  47. Raibaud O., Richet E. 1987; Maltotriose is the inducer of the maltose regulon of Escherichia coli. J Bacteriol 169:3059–3061
    [Google Scholar]
  48. Rasmussen A. A., Søgaard-Andersen L. 2003; TodK, a putative histidine protein kinase, regulates timing of fruiting body morphogenesis in Myxococcus xanthus. J Bacteriol 185:5452–5464 [CrossRef]
    [Google Scholar]
  49. Richet E., Raibaud O. 1989; MalT, the regulatory protein of the Escherichia coli maltose system, is an ATP-dependent transcriptional activator. EMBO J 8:981–987
    [Google Scholar]
  50. Romeo J. M., Zusman D. R. 1991; Transcription of the myxobacterial hemagglutinin gene is mediated by a sigma 54-like promoter and a cis-acting upstream regulatory region of DNA. J Bacteriol 173:2969–2976
    [Google Scholar]
  51. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  52. Shimkets L. J. 1990; Social and developmental biology of the myxobacteria. Microbiol Rev 54:473–501
    [Google Scholar]
  53. Shimkets L. J. 1999; Intercellular signaling during fruiting-body development of Myxococcus xanthus. Annu Rev Microbiol 53:525–549 [CrossRef]
    [Google Scholar]
  54. Shimkets L. J., Asher S. J. 1988; Use of recombination techniques to examine the structure of the csg locus of Myxococcus xanthus. Mol Gen Genet 211:63–71 [CrossRef]
    [Google Scholar]
  55. Shimkets L. J., Kaiser D. 1982; Induction of coordinated movement of Myxococcus xanthus cells. J Bacteriol 152:451–461
    [Google Scholar]
  56. Singer M., Kaiser D. 1995; Ectopic production of guanosine penta- and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes Dev 9:1633–1644 [CrossRef]
    [Google Scholar]
  57. Spormann A. M. 1999; Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbial Mol Biol Rev 63:621–641
    [Google Scholar]
  58. Spratt B. G., Hedge P. J., te Heesen S., Edelman A., Broome-Smith J. K. 1986; Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. Gene 41:337–342 [CrossRef]
    [Google Scholar]
  59. Sun H., Shi W. 2001a; Genetic studies of mrp, a locus essential for cellular aggregation and sporulation of Myxococcus xanthus. J Bacteriol 183:4786–4795 [CrossRef]
    [Google Scholar]
  60. Sun H., Shi W. 2001b; Analyses of mrp genes during Myxococcus xanthus development. J Bacteriol 183:6733–6739 [CrossRef]
    [Google Scholar]
  61. Søgaard-Andersen L., Kaiser D. 1996; C factor, a cell-surface-associated intercellular signaling protein, stimulates the cytoplasmic Frz signal transduction system in Myxococcus xanthus. Proc Natl Acad Sci U S A 93:2675–2679 [CrossRef]
    [Google Scholar]
  62. Søgaard-Andersen L., Slack F. J., Kimsey H., Kaiser D. 1996; Intercellular C-signaling in Myxococcus xanthus involves a branched signal transduction pathway. Genes Dev 10:740–754 [CrossRef]
    [Google Scholar]
  63. Søgaard-Andersen L., Overgaard M., Lobedanz S., Ellehauge E., Jelsbak L., Rasmussen A. A. 2003; Coupling gene expression and multicellular morphogenesis during fruiting body formation in Myxococcus xanthus. Mol Microbiol 48:1–8 [CrossRef]
    [Google Scholar]
  64. Thompson J. D., Gibson T. J., Plewnik F., Jeanmougin F., Higgins D. G. 1997; The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids. Res 24:4876–4882
    [Google Scholar]
  65. Thöny-Meyer L., Kaiser D. 1993; devRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus. J Bacteriol 175:7450–7462
    [Google Scholar]
  66. Toal D. R., Clifton S. W., Roe B. A., Downard J. 1995; The esg locus of Myxococcus xanthus encodes the E1α and E1β subunits of a branched-chain keto acid dehydrogenase. Mol Microbiol 16:177–189 [CrossRef]
    [Google Scholar]
  67. Ueki T., Inouye S. 1998; A new sigma factor, SigD, essential for stationary phase is also required for multicellular differentiation in Myxococcus xanthus. Genes Cells 3:371–385 [CrossRef]
    [Google Scholar]
  68. Ueki T., Inouye S. 2001; SigB, SigC, and SigE from Myxococcus xanthus homologous to sigma32 are not required for heat shock response but for multicellular differentiation. J Mol Microbiol Biotechnol 3:287–293
    [Google Scholar]
  69. Ueki T., Inouye S. 2003; Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus. Proc Natl Acad Sci U S A 100:8782–8787 [CrossRef]
    [Google Scholar]
  70. Viswanathan P., Kroos L. 2003; cis elements necessary for developmental expression of a Myxococcus xanthus gene that depends on C signaling. J Bacteriol 185:1405–1414 [CrossRef]
    [Google Scholar]
  71. Yoder D. R., Kroos L. 2004; Mutational analysis of the Myxococcus xanthus Omega-4400 promoter region provides insight into developmental gene regulation by C signaling. J Bacteriol 186:661–671 [CrossRef]
    [Google Scholar]
  72. Zhang R., Pappas T., Brace J. L.7 other authors 2002; Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417:971–974 [CrossRef]
    [Google Scholar]
  73. Zheng L., Halberg R., Roels S., Ichikawa H., Kroos L., Losick R. 1992; Sporulation regulatory protein GerE from Bacillus subtilis binds to and activate or repress transcription from promoters for mother-cell-specific genes. J Mol Biol 226:1037–1050 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27151-0
Loading
/content/journal/micro/10.1099/mic.0.27151-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed