1887

Abstract

In order to assimilate iron, ATCC 19606 produces a siderophore named acinetobactin (Ab) that is composed of equimolar quantities of 2,3-dihydroxybenzoic acid (DHBA), -threonine and -hydroxyhistamine. Application of the Fur titration assay system to genomic libraries, followed by further cloning of the regions surrounding the candidate genes, led to the identification of the Ab cluster, which harbours the genetic determinants necessary for the biosynthesis and transport of the siderophore. However, an homologue essential for DHBA biosynthesis was not found in this cluster. Functions of potential biosynthetic genes inferred by homology studies suggested that the precursors, DHBA, -threonine and -hydroxyhistamine, are linked in steps resembling those of bacterial non-ribosomal peptide synthesis to form Ab. Genes responsible for the two-step biosynthesis of -hydroxyhistamine from histidine were also identified in this cluster. Their genetic organization suggests that five genes involved in the transport system of ferric Ab into the cell cytosol form an operon. Construction of disruptants of some selected genes followed by phenotypic analysis supported their predicted biological functions. Interestingly, three additional genes probably involved in the intracellular release of iron from ferric Ab and the secretion of nascent Ab are contained in this cluster. Primer extension and RT-PCR analyses suggested that the Ab cluster, which includes 18 genes, is organized in seven transcriptional units originating from respective Fur-regulated promoter-operator regions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27141-0
2004-08-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/8/mic1502587.html?itemId=/content/journal/micro/10.1099/mic.0.27141-0&mimeType=html&fmt=ahah

References

  1. Actis L. A., Tolmasky M. E., Farrell D. H., Crosa J. H. 1988; Genetic and molecular characterization of essential components of the Vibrio anguillarum plasmid-mediated iron-transport system. J Biol Chem 263:2853–2860
    [Google Scholar]
  2. Actis L. A., Tolmasky M. E., Crosa L. M., Crosa J. H. 1993; Effect of iron-limiting conditions on growth of clinical isolates of Acinetobacter baumannii. J Clin Microbiol 31:2812–2815
    [Google Scholar]
  3. Actis L. A., Tolmasky M. E., Crosa L. M., Crosa J. H. 1995; Characterization and regulation of the repression of FatB, an iron transport protein encoded by the pJM1 virulence plasmid. Mol Microbiol 17:197–204 [CrossRef]
    [Google Scholar]
  4. Andrews S. C., Robinson A. K., Rodríguez-Quiñones F. 2003; Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237 [CrossRef]
    [Google Scholar]
  5. Bellaire B. H., Elzer P. H., Hagius S., Walker J., Baldwin C. L., Roop R. M. II 2003; Genetic organization and iron-responsive regulation of the Brucella abortus 2,3-dihydroxybenzoic acid biosynthesis operon, a cluster of genes required for wild-type virulence in pregnant cattle. Infect Immun 71:1794–1803 [CrossRef]
    [Google Scholar]
  6. Bergogne-Bérénin E., Towner K. J. 1996; Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 9:148–165
    [Google Scholar]
  7. Bouvet P. J. M., Grimont P. A. D. 1986; Taxonomy of the genus Acinetobacter with the recognition ofAcinetobacter baumannii sp. nov., and Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int J Syst Bacteriol 36:228–240 [CrossRef]
    [Google Scholar]
  8. Braun V. 1995; Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol Rev 16:295–307 [CrossRef]
    [Google Scholar]
  9. Braun V., Hantke K., Köster W. 1998; Bacterial iron transport: mechanisms, genetics, and regulation. Met Ions Biol Syst 35:67–145
    [Google Scholar]
  10. Butterton J. R., Calderwood S. B. 1994; Identification, cloning, and sequencing of a gene required for ferric vibriobactin utilization by Vibrio cholerae. J Bacteriol 176:5631–5638
    [Google Scholar]
  11. Butterton J. R., Choi M. H., Watnick P. I., Carroll P. A., Calderwood S. B. 2000; Vibrio cholerae VibF is required for vibriobactin synthesis and is a member of the family of nonribosomal peptide synthetases. J Bacteriol 182:1731–1738 [CrossRef]
    [Google Scholar]
  12. Crosa J. H., Walsh C. T. 2002; Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249 [CrossRef]
    [Google Scholar]
  13. Daniel C., Haentjens S., Bissinger M.-C., Courcol R. J. 1999; Characterization of the Acinetobacter baumannii Fur regulator: cloning and sequencing of the fur homolog gene. FEMS Microbiol Lett 170:199–209 [CrossRef]
    [Google Scholar]
  14. de Lorenzo V., Wee S., Herrero M., Neilands J. B. 1987; Operator sequence of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation (fur) repressor. J Bacteriol 169:2624–2630
    [Google Scholar]
  15. Di Lorenzo M., Stork M., Tolmasky M. E.9 other authors 2003; Complete sequence of virulence plasmid pJM1 from the marine fish pathogen Vibrio anguillarum strain 775. J Bacteriol 185:5822–5830 [CrossRef]
    [Google Scholar]
  16. Dorsey C. W., Tolmasky M. E., Crosa J. H., Actis L. A. 2003; Genetic organization of an Acinetobacter baumannii chromosomal region harbouring genes related to siderophore biosynthesis and transport. Microbiology 149:1227–1238 [CrossRef]
    [Google Scholar]
  17. Echenique J. R., Arienti H., Tolmasky M. E., Read R. R., Staneloni R. J., Crosa J. H., Actis L. A. 1992; Characterization of a high-affinity iron transport system in Acinetobacter baumannii. J Bacteriol 174:7670–7679
    [Google Scholar]
  18. Echenique J. R., Dorsey C. W., Patrito L. C., Petroni A., Tolmasky M. E., Actis L. A. 2001; Acinetobacter baumannii has two genes encoding glutathione-dependent formaldehyde dehydrogenase: evidence for differential regulation in response to iron. Microbiology 147:2805–2815
    [Google Scholar]
  19. Gehring A. M., Bradley K. A., Walsh C. T. 1997; Enterobactin biosynthesis in Escherichia coli: isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihyroxybenzoate. Biochemistry 36:8495–8503 [CrossRef]
    [Google Scholar]
  20. Griffiths G. L., Sigel S. P., Payne S. M., Neilands J. B. 1984; Vibriobactin, a siderophore from Vibrio cholerae. J Biol Chem 259:383–385
    [Google Scholar]
  21. Hanahan D. 1985 DNA Cloning: a Practical Approach vol. 1 pp 109 Edited by Glover S. W. Oxford: IRL Press;
  22. Hyde S. C., Emsley P., Hartshorn M. J.7 other authors 1990; Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346:362–365 [CrossRef]
    [Google Scholar]
  23. Jalal M. A. F., Hossain M. B., Van der Helm D., Sanders-Loehr J., Actis L. A., Crosa J. H. 1989; Structure of anguibactin, a unique plasmid-related bacterial siderophore from the fish pathogen Vibrio anguillarum. J Am Chem Soc 111:292–296 [CrossRef]
    [Google Scholar]
  24. Keating T. A., Marshall C. G., Walsh C. T. 2000; Reconstitution and characterization of the Vibrio cholerae vibriobactin synthetase from VibB, VibE, VibF, and VibH. Biochemistry 39:15522–15530 [CrossRef]
    [Google Scholar]
  25. Köster W. L., Actis L. A., Waldbeser L. S., Tolmasky M. E., Crosa J. H. 1991; Molecular characterization of the iron transport system mediated by the pJM1 plasmid in Vibrio anguillarum 775. J Biol Chem 266:23829–23833
    [Google Scholar]
  26. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  27. Leahy J. G., Jones-Meehan J. M., Colwell R. R. 1994; Transformation of Acinetobacter calcoaceticus RAG-1 by electroporation. Can J Microbiol 40:233–236 [CrossRef]
    [Google Scholar]
  28. Liu J., Duncan K., Walsh C. T. 1989; Nucleotide sequence of a cluster of Escherichia coli enterobactin biosynthesis genes: identification of entA and purification of its product 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase. J Bacteriol 171:791–798
    [Google Scholar]
  29. Lynch D., O'Brien J., Welch T., Clarke P., Crosa J. H., O'Connell M., Cuív P. Ó. 2001; Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti. J Bacteriol 183:2576–2585 [CrossRef]
    [Google Scholar]
  30. Magnet S., Courvalin P., Lambert T. 2001; Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother 45:3375–3380 [CrossRef]
    [Google Scholar]
  31. Marahiel M. A., Stachelhaus T., Mootz H. D. 1997; Modular peptide synthetases involved in non-ribosomal peptide synthesis. Chem Rev 97:2651–2674 [CrossRef]
    [Google Scholar]
  32. Marshall C. G., Hillson N. J., Walsh C. T. 2002; Catalytic mapping of the vibriobactin biosynthetic enzyme VibF. Biochemistry 41:244–250 [CrossRef]
    [Google Scholar]
  33. Massad G., Arceneaux J. E., Byers B. R. 1994; Diversity of siderophore genes encoding biosynthesis of 2,3-dihydroxybenzoic acid in Aeromonas spp. Biometals 7:227–236
    [Google Scholar]
  34. Nahlik M. S., Brickman T. J., Ozenberger B. A., McIntosh M. A. 1989; Nucleotide sequence and transcriptional organization of the Escherichia coli enterobactin biosynthesis cistrons entB and entA. J Bacteriol 171:784–790
    [Google Scholar]
  35. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6 [CrossRef]
    [Google Scholar]
  36. Ozenberger B. A., Brickman T. J., McIntosh M. A. 1989; Nucleotide sequence of Escherichia coli isochorismate synthetase gene entC and evolutionary relationship of isochorismate synthetase and other chorismate-utilizing enzymes. J Bacteriol 171:775–783
    [Google Scholar]
  37. Palmen R., Vosman B., Buijsman P., Breek C. K., Hellingwerf K. J. 1993; Physiological characterization of natural transformation in Acinetobacter calcoaceticus. J Gen Microbiol 139:295–305 [CrossRef]
    [Google Scholar]
  38. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  39. Putman M., van Veen H. W., Konings W. N. 2000; Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64:672–693 [CrossRef]
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  41. Schwyn B., Neilands J. B. 1987; Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56 [CrossRef]
    [Google Scholar]
  42. Staab J. F., Elkins M. F., Earhart C. F. 1989; Nucleotide sequence of the Escherichia coli entE gene. FEMS Microbiol Lett 50:15–19
    [Google Scholar]
  43. Stojiljkovic I., Hantke K., Bäumler A. J. 1994; Fur regulon in gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a Fur titration assay. J Mol Biol 236:531–545 [CrossRef]
    [Google Scholar]
  44. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer to proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354 [CrossRef]
    [Google Scholar]
  45. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268 [CrossRef]
    [Google Scholar]
  46. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951
    [Google Scholar]
  47. Webster C. A., Crowe M., Humphreys H., Towner K. J. 1998; Surveillance of an adult intensive care unit for long-term persistence of a multi-resistant strain of Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis 17:171–176
    [Google Scholar]
  48. Wu H. C., Tokunaga M. 1986; Biogenesis of lipoproteins in bacteria. Curr Top Microbiol Immunol 125:127–157
    [Google Scholar]
  49. Wyckoff E. E., Stoebner J. A., Reed K. E., Payne S. M. 1997; Cloning of a Vibrio cholerae vibriobactin gene cluster: identification of genes required for early steps in siderophore biosynthesis. J Bacteriol 179:7055–7062
    [Google Scholar]
  50. Yamamoto S., Okujo N., Sakabibara Y. 1994; Isolation and structure elucidation of acinetobactin, a novel siderophore from Acinetobacter baumannii. Arch Microbiol 162:249–254
    [Google Scholar]
  51. Yamamoto S., Akiyama T., Okujo N., Matsu-ura S., Shinoda S. 1995; Demonstration of a ferric vibrioferrin-binding protein in the outer membrane of Vibrio parahaemolyticus. Microbiol Immunol 39:759–766 [CrossRef]
    [Google Scholar]
  52. Yamamoto S., Okujo N., Kataoka H., Narimatsu S. 1999; Siderophore-mediated utilization of transferrin- and lactoferrin-bound iron by Acinetobacter baumannii. J Health Sci 45:297–302 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27141-0
Loading
/content/journal/micro/10.1099/mic.0.27141-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error