1887

Abstract

The antifungal polyketide soraphen A is produced by the myxobacterium So ce26. The slow growth, swarming motility and general intransigence of the strain for genetic manipulations make industrial strain development, large-scale fermentation and combinatorial biosynthetic manipulation of the soraphen producer very challenging. To provide a better host for soraphen A production and molecular engineering, the biosynthetic gene cluster for this secondary metabolite was integrated into the chromosome of ZX7. The upstream border of the gene cluster in was defined by disrupting , which is proposed to take part in the biosynthesis of methoxymalonyl-coenzyme A, to yield a strain with abolished soraphen A production. Insertional inactivation of further upstream of had no effect on soraphen A production. The genes , , , and thus implicated in soraphen biosynthesis were then introduced into an engineered strain that carried the polyketide synthase genes and , and the methyltransferase gene integrated into its chromosome. A benzoate-coenzyme A ligase from was also included in some constructs. Fermentations with the engineered strains in the presence of benzoate and/or cinnamate yielded soraphen A. Further feeding experiments were used to delineate the biosynthesis of the benzoyl-coenzyme A starter unit of soraphen A in the heterologous host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27138-0
2004-08-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/8/mic1502761.html?itemId=/content/journal/micro/10.1099/mic.0.27138-0&mimeType=html&fmt=ahah

References

  1. Ali, N., Herron, P. R., Evans, M. C. & Dyson, P. J. ( 2002; ). Osmotic regulation of the Streptomyces lividans thiostrepton-inducible promoter, PtipA. Microbiology 148, 381–390.
    [Google Scholar]
  2. An, H.-R., Park, H.-J. & Kim, E.-S. ( 2000; ). Characterization of benzoate degradation via ortho-cleavage by Streptomyces setonii. J Microbiol Biotechnol 10, 111–114.
    [Google Scholar]
  3. Avignone-Rossa, C., White, J., Kuiper, A., Postma, P. W., Bibb, M. & Teixeira de Mattos, M. J. ( 2002; ). Carbon flux distribution in antibiotic-producing chemostat cultures of Streptomyces lividans. Metab Eng 4, 138–150.[CrossRef]
    [Google Scholar]
  4. Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A. M. & 40 other authors ( 2002; ). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147.[CrossRef]
    [Google Scholar]
  5. Cox, R. J., Crosby, J., Daltrop, O. & 9 other authors ( 2002; ). Streptomyces coelicolor phosphopantetheinyl transferase: a promiscuous activator of polyketide and fatty acid synthase acyl carrier proteins. J Chem Soc Perkin Trans I, 1644–1649.
    [Google Scholar]
  6. Dayem, L. C., Carney, J. R., Santi, D. V., Pfeifer, B. A., Khosla, C. & Kealey, J. T. ( 2002; ). Metabolic engineering of a methylmalonyl-CoA mutase-epimerase pathway for complex polyketide biosynthesis in Escherichia coli. Biochemistry 41, 5193–5201.[CrossRef]
    [Google Scholar]
  7. Desai, R. P., Leaf, T., Woo, E. & Licari, P. ( 2002; ). Enhanced production of heterologous macrolide aglycones by fed-batch cultivation of Streptomyces coelicolor. J Ind Microbiol Biotechnol 28, 297–301.[CrossRef]
    [Google Scholar]
  8. Egland, P. G., Gibson, J. & Harwood, C. S. ( 1995; ). Benzoate-coenzyme A ligase, encoded by badA, is one of three ligases able to catalyze benzoyl-coenzyme A formation during anaerobic growth of Rhodopseudomonas palustris on benzoate. J Bacteriol 177, 6545–6551.
    [Google Scholar]
  9. Gerth, K., Bedorf, N., Irschik, H., Höfle, G. & Reichenbach, H. ( 1994; ). The soraphens: a family of novel antifungal compounds from Sorangium cellulosum (Myxobacteria). I. Soraphen A1 alpha: fermentation, isolation, biological properties. J Antibiot (Tokyo) 47, 23–31.[CrossRef]
    [Google Scholar]
  10. Gerth, K., Pradella, S., Perlova, O., Beyer, S. & Müller, R. ( 2003; ). Myxobacteria: proficient producers of novel natural products with various biological activities – past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol 106, 233–253.[CrossRef]
    [Google Scholar]
  11. Grund, E. & Kutzner, H. J. ( 1998; ). Utilization of quinate and p-hydroxybenzoate by actinomycetes. Key enzymes and taxonomic relevance. J Basic Microbiol 38, 241–255.[CrossRef]
    [Google Scholar]
  12. Haber, A., Johnson, R. D. & Rinehart, K. L., Jr ( 1977; ). Biosynthetic origin of the C2 units of geldanamycin and distribution of label from D-[6-13C]glucose. J Am Chem Soc 99, 3541–3544.[CrossRef]
    [Google Scholar]
  13. Henderson, D. J., Brolle, D. F., Kieser, T., Melton, R. E. & Hopwood, D. A. ( 1990; ). Transposition of IS117 (the Streptomyces coelicolor A 3 (2) mini-circle) to and from a cloned target site and into secondary chromosomal sites. Mol Gen Genet 224, 65–71.
    [Google Scholar]
  14. Hertweck, C., Jarvis, A. P., Xiang, L., Moore, B. S. & Oldham, N. J. ( 2001; ). A mechanism of benzoic acid biosynthesis in plants and bacteria that mirrors fatty acid β-oxidation. ChemBioChem 2, 784–786.[CrossRef]
    [Google Scholar]
  15. Hill, A. M. & Thompson, B. L. ( 2003; ). Novel soraphens from precursor directed biosynthesis. Chem Commun (Camb) 2003 (12), 1360–1361.
    [Google Scholar]
  16. Hill, A. M., Harris, J. P. & Siskos, A. P. ( 1998; ). Investigation of glycerol incorporation into soraphen A. Chem Commun (Camb) 1998 (12), 2361–2362.
    [Google Scholar]
  17. Hill, A. M., Thompson, B. L., Harris, J. P. & Segret, R. ( 2003; ). Investigation of the early stages in soraphen A biosynthesis. Chem Commun (Camb) 2003 (12), 1358–1359.
    [Google Scholar]
  18. Hopwood, D. A. ( 1997; ). Genetic contributions to understanding polyketide synthases. Chem Rev 97, 2465–2497.[CrossRef]
    [Google Scholar]
  19. Huang, J., Lih, C.-J., Pan, K.-H. & Cohen, S. N. ( 2001; ). Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev 15, 3183–3192.[CrossRef]
    [Google Scholar]
  20. Jaoua, S., Neff, S. & Schupp, T. ( 1992; ). Transfer of mobilizable plasmids to Sorangium cellulosum and evidence for their integration into the chromosome. Plasmid 28, 157–165.[CrossRef]
    [Google Scholar]
  21. Julien, B. & Shah, S. ( 2002; ). Heterologous expression of epothilone biosynthetic genes in Myxococcus xanthus. Antimicrob Agents Chemother 46, 2772–2778.[CrossRef]
    [Google Scholar]
  22. Kaneko, M., Ohnishi, Y. & Horinouchi, S. ( 2003; ). Cinnamate : coenzyme A ligase from the filamentous bacterium Streptomyces coelicolor A3(2). J Bacteriol 185, 20–27.[CrossRef]
    [Google Scholar]
  23. Kao, C. M., Katz, L. & Khosla, C. ( 1994; ). Engineered biosynthesis of a complete macrolactone in a heterologous host. Science 265, 509–512.[CrossRef]
    [Google Scholar]
  24. Kato, Y., Bai, L., Xue, Q., Revill, W. P., Yu, T.-W. & Floss, H. G. ( 2002; ). Functional expression of genes involved in the biosynthesis of the novel polyketide chain extension unit, methoxymalonyl-acyl carrier protein, and engineered biosynthesis of 2-desmethyl-2-methoxy-6-deoxyerythronolide B. J Am Chem Soc 124, 5268–5269.[CrossRef]
    [Google Scholar]
  25. Kealey, J. T., Liu, L., Santi, D. V., Betlach, M. C. & Barr, P. J. ( 1998; ). Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proc Natl Acad Sci U S A 95, 505–509.[CrossRef]
    [Google Scholar]
  26. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. ( 2000; ). Practical Streptomyces Genetics. Norwich, UK: the John Innes Foundation.
  27. Kopp, M., Irschik, H., Gross, F., Perlova, O., Sandmann, A., Gerth, K. & Müller, R. ( 2004; ). Critical variations of conjugational DNA transfer into secondary metabolite multiproducing Sorangium cellulosum strains So ce12 and So ce56: development of a mariner-based transposon mutagenesis system. J Biotechnol 107, 29–40.[CrossRef]
    [Google Scholar]
  28. Kuhstoss, S. & Rao, R. N. ( 1991; ). Analysis of the integration function of the streptomycete bacteriophage ϕC31. J Mol Biol 222, 897–908.[CrossRef]
    [Google Scholar]
  29. Kuhstoss, S., Huber, M., Turner, J. R., Paschal, J. W. & Rao, R. N. ( 1996; ). Production of a novel polyketide through the construction of a hybrid polyketide synthase. Gene 183, 231–236.[CrossRef]
    [Google Scholar]
  30. Kyung, Y. S., Sherman, D. H. & Hu, W.-S. ( 2001; ). Simultaneous analysis of spatio-temporal gene expression for cephamycin biosynthesis in Streptomyces clavuligerus. Biotechnol Prog 17, 1000–1007.[CrossRef]
    [Google Scholar]
  31. Lau, J., Frykman, S., Regentin, R., Ou, S., Tsuruta, H. & Licari, P. ( 2002; ). Optimizing the heterologous production of epothilone D in Myxococcus xanthus. Biotechnol Bioeng 78, 280–288.[CrossRef]
    [Google Scholar]
  32. Ligon, J., Hill, S., Beck, J., Zirkle, R., Molnár, I., Zawodny, J., Money, S. & Schupp, T. ( 2002; ). Characterization of the biosynthetic gene cluster for the antifungal polyketide soraphen A from Sorangium cellulosum So ce26. Gene 285, 257–267.[CrossRef]
    [Google Scholar]
  33. Lombo, F., Pfeifer, B., Leaf, T., Ou, S., Kim, Y. S., Cane, D. E., Licari, P. & Khosla, C. ( 2001; ). Enhancing the atom economy of polyketide biosynthetic processes through metabolic engineering. Biotechnol Prog 17, 612–617.[CrossRef]
    [Google Scholar]
  34. MacNeil, D. J., Occi, J. L., Gewain, K. M., MacNeil, T., Gibbons, P. H., Ruby, C. L. & Danis, S. J. ( 1992; ). Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase. Gene 115, 119–125.[CrossRef]
    [Google Scholar]
  35. Martin, C. J., Timoney, M. C., Sheridan, R. M., Kendrew, S. G., Wilkinson, B., Staunton, J. & Leadlay, P. F. ( 2003; ). Heterologous expression in Saccharopolyspora erythraea of a pentaketide synthase derived from the spinosyn polyketide synthase. Org Biomol Chem 1, 4144–4147.[CrossRef]
    [Google Scholar]
  36. Molnár, I., Schupp, T., Ono, M. & 13 other authors ( 2000; ). The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. Chem Biol 7, 97–109.[CrossRef]
    [Google Scholar]
  37. Moore, B. S. & Hertweck, C. ( 2002; ). Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat Prot Rep 19, 70–99.[CrossRef]
    [Google Scholar]
  38. Moore, B. S., Hertweck, C., Hopke, J. N. & 9 other authors ( 2002; ). Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone. J Nat Prod 65, 1956–1962.[CrossRef]
    [Google Scholar]
  39. Murakami, T., Holt, T. G. & Thompson, C. J. ( 1989; ). Thiostrepton-induced gene expression in Streptomyces lividans. J Bacteriol 171, 1459–1466.
    [Google Scholar]
  40. Murli, S., Kennedy, J., Dayem, L. C., Carney, J. R. & Kealey, J. T. ( 2003; ). Metabolic engineering of Escherichia coli for improved 6-deoxyerythronolide B production. J Ind Microbiol Biotechnol 30, 500–509.[CrossRef]
    [Google Scholar]
  41. Omura, S., Tsuzuki, K., Nakagawa, A. & Lukacs, G. ( 1983; ). Biosynthetic origin of carbons 3 and 4 of leucomycin aglycone. J Antibiot (Tokyo) 36, 611–613.[CrossRef]
    [Google Scholar]
  42. Pfeifer, B. A. & Khosla, C. ( 2001; ). Biosynthesis of polyketides in heterologous hosts. Microbiol Mol Biol Rev 65, 106–118.[CrossRef]
    [Google Scholar]
  43. Pfeifer, B. A., Admiraal, S. J., Gramajo, H., Cane, D. E. & Khosla, C. ( 2001; ). Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291, 1790–1792.[CrossRef]
    [Google Scholar]
  44. Pfeifer, B., Hu, Z., Licari, P. & Khosla, C. ( 2002; ). Process and metabolic strategies for improved production of Escherichia coli-derived 6-deoxyerythronolide B. Appl Environ Microbiol 68, 3287–3292.[CrossRef]
    [Google Scholar]
  45. Pfeifer, B. A., Wang, C. C. C., Walsh, C. T. & Khosla, C. ( 2003; ). Biosynthesis of yersiniabactin, a complex polyketide-nonribosomal peptide, using Escherichia coli as a heterologous host. Appl Environ Microbiol 69, 6698–6702.[CrossRef]
    [Google Scholar]
  46. Pradella, S., Hans, A., Sproer, C., Reichenbach, H., Gerth, K. & Beyer, S. ( 2002; ). Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch Microbiol 178, 484–492.[CrossRef]
    [Google Scholar]
  47. Reichenbach, H. ( 1999; ). The ecology of the myxobacteria. Environ Microbiol 1, 15–21.[CrossRef]
    [Google Scholar]
  48. Reichenbach, H. & Höfle, G. ( 1999; ). Myxobacteria as producers of secondary metabolites. In Drug Discovery from Nature, pp. 149–179. Edited by S. Grabley & R. Thiericke. Berlin, Heidelberg: Springer.
  49. Rodriguez, E., Hu, Z., Ou, S., Volchegursky, Y., Hutchinson, C. R. & McDaniel, R. ( 2003; ). Rapid engineering of polyketide overproduction by gene transfer to industrially optimized strains. J Ind Microbiol Biotechnol 30, 480–488.[CrossRef]
    [Google Scholar]
  50. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  51. Schneider, S. & Fuchs, G. ( 1998; ). Phenylacetyl-CoA : acceptor oxidoreductase, a new alpha-oxidizing enzyme that produces phenylglyoxylate. Assay, membrane localization, and differential production in Thauera aromatica. Arch Microbiol 169, 509–516.[CrossRef]
    [Google Scholar]
  52. Schneider, S., Mohamed, M. E. & Fuchs, G. ( 1997; ). Anaerobic metabolism of l-phenylalanine via benzoyl-CoA in the denitrifying bacterium Thauera aromatica. Arch Microbiol 168, 310–320.[CrossRef]
    [Google Scholar]
  53. Schupp, T., Toupet, C., Cluzel, B., Neff, S., Hill, S., Beck, J. J. & Ligon, J. M. ( 1995; ). A Sorangium cellulosum (Myxobacterium) gene cluster for the biosynthesis of the macrolide antibiotic soraphen A: cloning, characterization, and homology to polyketide synthase genes from actinomycetes. J Bacteriol 177, 3673–3679.
    [Google Scholar]
  54. Shah, S., Xue, Q., Tang, L., Carney, J. R., Betlach, M. & McDaniel, R. ( 2000; ). Cloning, characterization and heterologous expression of a polyketide synthase and P-450 oxidase involved in the biosynthesis of the antibiotic oleandomycin. J Antibiot (Tokyo) 53, 502–508.[CrossRef]
    [Google Scholar]
  55. Silakowski, B., Nordsiek, G., Kunze, B., Blöcker, H. & Müller, R. ( 2001; ). Novel features in a combined polyketide synthase/non-ribosomal peptide synthetase: the myxalamid biosynthetic gene cluster of the myxobacterium Stigmatella aurantiaca Sga15(1). Chem Biol 8, 59–69.[CrossRef]
    [Google Scholar]
  56. Strohl, W. R. ( 1992; ). Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res 20, 961–974.[CrossRef]
    [Google Scholar]
  57. Tang, L. & McDaniel, R. ( 2001; ). Construction of desosamine containing polyketide libraries using a glycosyltransferase with broad substrate specificity. Chem Biol 8, 547–555.[CrossRef]
    [Google Scholar]
  58. Tang, L., Fu, H., Betlach, M. C. & McDaniel, R. ( 1999; ). Elucidating the mechanism of chain termination switching in the picromycin/methymycin polyketide synthase. Chem Biol 6, 553–558.[CrossRef]
    [Google Scholar]
  59. Tang, L., Fu, H. & McDaniel, R. ( 2000; ). Formation of functional heterologous complexes using subunits from the picromycin, erythromycin and oleandomycin polyketide synthases. Chem Biol 7, 77–84.[CrossRef]
    [Google Scholar]
  60. Tang, L., Shah, S., Chung, L., Carney, J., Katz, L., Khosla, C. & Julien, B. ( 2000; ). Cloning and heterologous expression of the epothilone gene cluster. Science 287, 640–642.[CrossRef]
    [Google Scholar]
  61. Vahlensieck, H. F., Pridzun, L., Reichenbach, H. & Hinnen, A. ( 1994; ). Identification of the yeast ACC1 gene product (acetyl-CoA carboxylase) as the target of the polyketide fungicide soraphen A. Curr Genet 25, 95–100.[CrossRef]
    [Google Scholar]
  62. Volchegursky, Y., Hu, Z., Katz, L. & McDaniel, R. ( 2000; ). Biosynthesis of the anti-parasitic agent megalomicin: transformation of erythromycin to megalomicin in Saccharopolyspora erythraea. Mol Microbiol 37, 752–762.[CrossRef]
    [Google Scholar]
  63. Wilkinson, C. J., Frost, E. J., Staunton, J. & Leadlay, P. F. ( 2001; ). Chain initiation on the soraphen-producing modular polyketide synthase from Sorangium cellulosum. Chem Biol 8, 1197–1208.[CrossRef]
    [Google Scholar]
  64. Wu, K., Chung, L., Revill, W. P., Katz, L. & Reeves, C. D. ( 2000; ). The FK520 gene cluster of Streptomyces hygroscopicus var. ascomyceticus (ATCC 14891) contains genes for biosynthesis of unusual polyketide extender units. Gene 251, 81–90.[CrossRef]
    [Google Scholar]
  65. Xiang, L. & Moore, B. S. ( 2003; ). Characterization of benzoyl coenzyme A biosynthesis genes in the enterocin-producing bacterium ‘Streptomyces maritimus’. J Bacteriol 185, 399–404.[CrossRef]
    [Google Scholar]
  66. Xue, Q., Ashley, G., Hutchinson, C. R. & Santi, D. V. ( 1999; ). A multiplasmid approach to preparing large libraries of polyketides. Proc Natl Acad Sci U S A 96, 11740–11745.[CrossRef]
    [Google Scholar]
  67. Yu, T. W., Bai, L., Clade, D. & 7 other authors ( 2002; ). The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc Natl Acad Sci U S A 99, 7968–7973.[CrossRef]
    [Google Scholar]
  68. Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P. & del Cardayre, S. B. ( 2002; ). Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415, 644–646.[CrossRef]
    [Google Scholar]
  69. Ziermann, R. & Betlach, M. C. ( 1999; ). Recombinant polyketide synthesis in Streptomyces: engineering of improved host strains. BioTechniques 26, 106–110.
    [Google Scholar]
  70. Ziermann, R. & Betlach, M. C. ( 2000; ). A two vector system for the production of recombinant polyketides in Streptomyces. J Ind Microbiol Biotechnol 24, 46–50.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27138-0
Loading
/content/journal/micro/10.1099/mic.0.27138-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error