1887

Abstract

Yeast cells of are induced by serum at 37 °C to produce germ tubes, the first step in a transition from yeast to hyphal growth. Previously, it has been shown that the active component is not serum albumin but is present in the dialysable fraction of serum. In this study, serum induction of germ-tube formation is shown to occur even in the presence of added exogenous nitrogen sources and is therefore not signalled by nitrogen derepression. The active component in serum was purified by ion-exchange, reverse-phase and size-exclusion chromatography from the dialysable fraction of serum and was identified by NMR to be -glucose. Enzymic destruction of glucose, using glucose oxidase, demonstrated that -glucose was the only active component in these fractions. Induction of germ-tube formation by -glucose required a temperature of 37 °C and the pH optimum was between pH 7·0 and 8·0. -Glucose induced germ-tube formation in a panel of clinical isolates of . Although -glucose is the major inducer in serum, a second non-dialysable, trichloroacetic acid precipitable inducer is also present. However, whereas either 1·4 % (v/v) serum or an equivalent concentration of -glucose induced 50 % germ-tube formation, the non-dialysable component required a 10-fold higher concentration to induce 50 % germ-tube formation. Serum is, therefore, the most effective induction medium for germ-tube formation because it is buffered at about pH 8·5 and contains two distinct inducers (glucose and a non-dialysable component), both active at this pH.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27121-0
2004-09-01
2020-07-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/9/mic1503041.html?itemId=/content/journal/micro/10.1099/mic.0.27121-0&mimeType=html&fmt=ahah

References

  1. Bahn Y. S., Sundstrom P. 2001; CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth and cyclic AMP levels and is required for virulence ofCandida albicans. J Bacteriol183:3211–3223[CrossRef]
    [Google Scholar]
  2. Barlow A. J. E., Aldersley T., Chattaway F. W. 1974; Factors present in serum and seminal plasma which promote germ tube formation and mycelial growth of Candida albicans. J Gen Microbiol82:261–272[CrossRef]
    [Google Scholar]
  3. Bock K., Thøgersen H. 1982; Nuclear magnetic resonance spectroscopy in the study of mono- and oligosaccharides. Annu Rep NMR Spectrosc13:1–57
    [Google Scholar]
  4. Brightman C. A. J., Dumbreck L. A. 1989; The use of microtitre plates to observe germ tube formation in Candida albicans. Med Lab Sci46:270–271
    [Google Scholar]
  5. Casanova M., Cervera A. M., Gozalbo D., Martínez J. P. 1997; Hemin induces germ tube formation in Candida albicans. Infect Immun65:4360–4364
    [Google Scholar]
  6. Cassone A., Sullivan P. A., Shepherd M. G. 1985; N-Acetyl-d-glucosamine-induced morphogenesis in Candida albicans. Microbiologica8:85–99
    [Google Scholar]
  7. Chaplin M. F. 1986; Monosaccharides. In Carbohydrate Analysis: a Practical Approach pp.1–36 Edited by Chaplin M. F., Kennedy J. F.. Oxford: IRL Press;
    [Google Scholar]
  8. Csank C., Schroppel K., Leberer E., Harcus D., Mohamed O., Meloche S., Thomas D. Y., Whiteway M. 1998; Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun66:2713–2721
    [Google Scholar]
  9. Ernst J. F. 2000; Transcription factors in Candida albicans – environmental control of morphogenesis. Microbiology146:1763–1774
    [Google Scholar]
  10. Fan J., Chaturvedi V., Shen S. H. 2002; Identification and phylogenetic analysis of a glucose transporter gene family from the human pathogenic yeast Candida albicans. J Mol Evol55:336–346[CrossRef]
    [Google Scholar]
  11. Farley P. C., Santosa S. 2002; Regulation of expression of the Rhizopus oryzae uricase and urease enzymes. Can J Microbiol48:1104–1108[CrossRef]
    [Google Scholar]
  12. Feng Q., Summers E., Guo B., Fink G. 1999; Ras signalling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol181:6339–6346
    [Google Scholar]
  13. Goswami R., Dadhwai V., Tejaswi S., Datta K., Paul A., Haricharan R. N., Banerjee U., Kochupillai N. P. 2000; Species-specific prevalence of vaginal candidasis among patients with diabetes mellitus and its relation to their glycaemic status. J Infect41:162–166[CrossRef]
    [Google Scholar]
  14. Gow N. A. 1997; Germ tube growth of Candida albicans. Curr Top Med Mycol8:43–55
    [Google Scholar]
  15. Guggenheimer J., Moore P. A., Rossie K., Myers D., Mongelluzzo M. B., Block H. M., Weyant R., Orchard T. 2000; Insulin-dependent diabetes mellitus and oral soft tissue pathologies: II. Prevalence and characteristics of Candida and candidal lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod89:570–576[CrossRef]
    [Google Scholar]
  16. Holmes A. R., Shepherd M. G. 1987; Proline-induced germ tube formation in Candida albicans: role of proline uptake and nitrogen metabolism. J Gen Microbiol133:3219–3228
    [Google Scholar]
  17. Holmes A. R., McNaughton G. S., More R. D., Shepherd M. G. 1991; Ammonium assimilation by Candida albicans and other yeasts: a 13N isotope study. Can J Microbiol37:226–232[CrossRef]
    [Google Scholar]
  18. Hrmova M., Drobnica L. 1981; Induction of mycelial type of development in Candida albicans by low glucose concentration. Mycopathologia76:83–96[CrossRef]
    [Google Scholar]
  19. Knowles T. G., Edwards J. E., Bazeley K. J., Brown S. N., Butterworth A., Warriss P. D. 2000; Changes in the blood biochemical and haematological profile of neonatal calves with age. Vet Rec147:593–598[CrossRef]
    [Google Scholar]
  20. Limjindaporn T., Khalaf R. A., Fonzi W. A. 2003; Nitrogen metabolism and virulence of Candida albicans require the GATA-type transcriptional activator encoded by GAT1. Mol Microbiol50:993–1004[CrossRef]
    [Google Scholar]
  21. Liu H. 2001; Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol4:728–735[CrossRef]
    [Google Scholar]
  22. Lo H.-J., Kohler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. 1997; Nonfilamentous C. albicans mutants are avirulent. Cell90:939–949[CrossRef]
    [Google Scholar]
  23. Marzluf G. A. 1997; Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev61:17–32
    [Google Scholar]
  24. Nantel A., Dignard D., Bachewich C. & 12 other authors. 2002; Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell13:3452–3465[CrossRef]
    [Google Scholar]
  25. Navarro-Garcia F., Sanchez M., Nombela C., Pla J. 2001; Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol Rev25:245–268[CrossRef]
    [Google Scholar]
  26. Niimi K., Shepherd M. G., Cannon R. D. 1998; Candida albicans HEX1 gene, a reporter of gene expression inSaccharomyces cerevisiae. Arch Microbiol170:113–119[CrossRef]
    [Google Scholar]
  27. Odds F. C. 1988; Candida and Candidosis, 2nd edn. London: Baillière Tindall;
    [Google Scholar]
  28. Olaiya A. F., Steed J. R., Sogin S. J. 1980; Deoxyribonucleic acid-deficient strains of Candida albicans. J Bacteriol141:1284–1290
    [Google Scholar]
  29. Palecek S. P., Parikh A. S., Kron S. J. 2002; Sensing, signalling and integrating physical processes during Saccharomyces cerevisiae invasive and filamentous growth. Microbiology148:893–907
    [Google Scholar]
  30. Perez-Campo F. M., Dominguez A. 2001; Factors affecting the morphogenetic switch in Yarrowia lipolytica. Curr Microbiol43:429–433[CrossRef]
    [Google Scholar]
  31. Reynolds R., Braude A. I. 1956; The filament inducing property of blood for Candida albicans; its nature and significance. Clin Res Proc4:40
    [Google Scholar]
  32. Rocha C. R. C., Schroppel K., Harcus D., Marcil A., Dignard D., Taylor B. N., Thomas D. Y., Whiteway M., Leberer E. 2001; Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell12:3631–3643[CrossRef]
    [Google Scholar]
  33. Rolland F., de Winde J. H., Lemaire K., Boles E., Thevelein J. M., Winderickx J. 2000; Glucose-induced camp signaling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separate hexose kinase-dependent sensing process. Mol Microbiol38:348–358[CrossRef]
    [Google Scholar]
  34. Rolland F., Winderickx J., Thevelein J. M. 2002; Glucose-sensing and -signaling mechanisms in yeast. FEMS Yeast Res2:183–201[CrossRef]
    [Google Scholar]
  35. Ross I. K., De Bernardis F., Emerson G. W., Cassone A., Sullivan P. A. 1990; The secreted aspartate proteinase of Candida albicans: physiology of secretion and virulence of a proteinase-deficient mutant. J Gen Microbiol136:687–694[CrossRef]
    [Google Scholar]
  36. Schmid J., Herd S., Hunter P. R. & 13 other authors. 1999; Evidence for a general-purpose genotype in Candida albicans, highly prevalent in multiple geographical regions, patient types and types of infection. Microbiology145:2405–2413
    [Google Scholar]
  37. Shepherd M. G., Chiew Y. Y., Ram S. P., Sullivan P. A. 1980; Germ tube induction in Candida albicans. Can J Microbiol26:21–26[CrossRef]
    [Google Scholar]
  38. Sullivan P. A., Yin C. Y., Molloy C., Templeton M. D., Shepherd M. G. 1983; An analysis of the metabolism and cell wall composition of Candida albicans during germ tube formation. Can J Microbiol29:1514–1525[CrossRef]
    [Google Scholar]
  39. Swoboda R. K., Bertram G., Delbruck S., Ernst J. F., Gow N. A., Gooday G. W., Brown A. J. 1994; Fluctuations in glycolytic mRNA levels during morphogenesis in Candida albicans reflect underlying changes in growth and are not a response to cellular dimorphism. Mol Microbiol13:663–672[CrossRef]
    [Google Scholar]
  40. Taschdjian C. L., Burchall J. J., Kozinn P. J. 1960; Rapid identification of Candida albicans by filamentation on serum and serum substitutes. Am J Dis Child99:212–215
    [Google Scholar]
  41. Varma A., Singh B. B., Karnani N., Lichtenberg-Frate H., Hofer M., Magee B. B., Prasad R. 2000; Molecular cloning and functional characterization of a glucose transporter, CaHGT1, of Candida albicans. FEMS Microbiol Lett182:15–21[CrossRef]
    [Google Scholar]
  42. Vidotto V., Accattatis G., Zhang Q., Campanini G., Aoki S. 1996; Glucose influence on germ tube production in Candida albicans. Mycopathologia133:143–147[CrossRef]
    [Google Scholar]
  43. Walsh T. J., Kelly P., Peebles R., Lee J., Lecciones J., Pizzo P. A. 1994; Biochemical and pharmacological factors causing induction and suppression of germination of Trichosporon beigelii. J Med Vet Mycol32:123–132
    [Google Scholar]
  44. White S., Larsen B. 1997; Candida albicans morphogenesis is influenced by estrogen. Cell Mol Life Sci53:744–749[CrossRef]
    [Google Scholar]
  45. Whiteway M. 2000; Transcriptional control of cell type and morphogenesis in Candida albicans. Curr Opin Microbiol3:582–588[CrossRef]
    [Google Scholar]
  46. Witkin S. S., Kalo-Klein A. 1991; Enhancement of germ tube formation in Candida albicans by β-endorphin. Am J Obstet Gynecol164:917–920[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27121-0
Loading
/content/journal/micro/10.1099/mic.0.27121-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error