1887

Abstract

Yeast cells of are induced by serum at 37 °C to produce germ tubes, the first step in a transition from yeast to hyphal growth. Previously, it has been shown that the active component is not serum albumin but is present in the dialysable fraction of serum. In this study, serum induction of germ-tube formation is shown to occur even in the presence of added exogenous nitrogen sources and is therefore not signalled by nitrogen derepression. The active component in serum was purified by ion-exchange, reverse-phase and size-exclusion chromatography from the dialysable fraction of serum and was identified by NMR to be -glucose. Enzymic destruction of glucose, using glucose oxidase, demonstrated that -glucose was the only active component in these fractions. Induction of germ-tube formation by -glucose required a temperature of 37 °C and the pH optimum was between pH 7·0 and 8·0. -Glucose induced germ-tube formation in a panel of clinical isolates of . Although -glucose is the major inducer in serum, a second non-dialysable, trichloroacetic acid precipitable inducer is also present. However, whereas either 1·4 % (v/v) serum or an equivalent concentration of -glucose induced 50 % germ-tube formation, the non-dialysable component required a 10-fold higher concentration to induce 50 % germ-tube formation. Serum is, therefore, the most effective induction medium for germ-tube formation because it is buffered at about pH 8·5 and contains two distinct inducers (glucose and a non-dialysable component), both active at this pH.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27121-0
2004-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/9/mic1503041.html?itemId=/content/journal/micro/10.1099/mic.0.27121-0&mimeType=html&fmt=ahah

References

  1. Bahn Y. S., Sundstrom P. 2001; CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth and cyclic AMP levels and is required for virulence ofCandida albicans. J Bacteriol 183:3211–3223 [CrossRef]
    [Google Scholar]
  2. Barlow A. J. E., Aldersley T., Chattaway F. W. 1974; Factors present in serum and seminal plasma which promote germ tube formation and mycelial growth of Candida albicans. J Gen Microbiol 82:261–272 [CrossRef]
    [Google Scholar]
  3. Bock K., Thøgersen H. 1982; Nuclear magnetic resonance spectroscopy in the study of mono- and oligosaccharides. Annu Rep NMR Spectrosc 13:1–57
    [Google Scholar]
  4. Brightman C. A. J., Dumbreck L. A. 1989; The use of microtitre plates to observe germ tube formation in Candida albicans. Med Lab Sci 46:270–271
    [Google Scholar]
  5. Casanova M., Cervera A. M., Gozalbo D., Martínez J. P. 1997; Hemin induces germ tube formation in Candida albicans. Infect Immun 65:4360–4364
    [Google Scholar]
  6. Cassone A., Sullivan P. A., Shepherd M. G. 1985; N-Acetyl-d-glucosamine-induced morphogenesis in Candida albicans. Microbiologica 8:85–99
    [Google Scholar]
  7. Chaplin M. F. 1986; Monosaccharides. In Carbohydrate Analysis: a Practical Approach pp. 1–36 Edited by Chaplin M. F., Kennedy J. F. Oxford: IRL Press;
    [Google Scholar]
  8. Csank C., Schroppel K., Leberer E., Harcus D., Mohamed O., Meloche S., Thomas D. Y., Whiteway M. 1998; Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect Immun 66:2713–2721
    [Google Scholar]
  9. Ernst J. F. 2000; Transcription factors in Candida albicans – environmental control of morphogenesis. Microbiology 146:1763–1774
    [Google Scholar]
  10. Fan J., Chaturvedi V., Shen S. H. 2002; Identification and phylogenetic analysis of a glucose transporter gene family from the human pathogenic yeast Candida albicans. J Mol Evol 55:336–346 [CrossRef]
    [Google Scholar]
  11. Farley P. C., Santosa S. 2002; Regulation of expression of the Rhizopus oryzae uricase and urease enzymes. Can J Microbiol 48:1104–1108 [CrossRef]
    [Google Scholar]
  12. Feng Q., Summers E., Guo B., Fink G. 1999; Ras signalling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol 181:6339–6346
    [Google Scholar]
  13. Goswami R., Dadhwai V., Tejaswi S., Datta K., Paul A., Haricharan R. N., Banerjee U., Kochupillai N. P. 2000; Species-specific prevalence of vaginal candidasis among patients with diabetes mellitus and its relation to their glycaemic status. J Infect 41:162–166 [CrossRef]
    [Google Scholar]
  14. Gow N. A. 1997; Germ tube growth of Candida albicans. Curr Top Med Mycol 8:43–55
    [Google Scholar]
  15. Guggenheimer J., Moore P. A., Rossie K., Myers D., Mongelluzzo M. B., Block H. M., Weyant R., Orchard T. 2000; Insulin-dependent diabetes mellitus and oral soft tissue pathologies: II. Prevalence and characteristics of Candida and candidal lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 89:570–576 [CrossRef]
    [Google Scholar]
  16. Holmes A. R., Shepherd M. G. 1987; Proline-induced germ tube formation in Candida albicans: role of proline uptake and nitrogen metabolism. J Gen Microbiol 133:3219–3228
    [Google Scholar]
  17. Holmes A. R., McNaughton G. S., More R. D., Shepherd M. G. 1991; Ammonium assimilation by Candida albicans and other yeasts: a 13N isotope study. Can J Microbiol 37:226–232 [CrossRef]
    [Google Scholar]
  18. Hrmova M., Drobnica L. 1981; Induction of mycelial type of development in Candida albicans by low glucose concentration. Mycopathologia 76:83–96 [CrossRef]
    [Google Scholar]
  19. Knowles T. G., Edwards J. E., Bazeley K. J., Brown S. N., Butterworth A., Warriss P. D. 2000; Changes in the blood biochemical and haematological profile of neonatal calves with age. Vet Rec 147:593–598 [CrossRef]
    [Google Scholar]
  20. Limjindaporn T., Khalaf R. A., Fonzi W. A. 2003; Nitrogen metabolism and virulence of Candida albicans require the GATA-type transcriptional activator encoded by GAT1. Mol Microbiol 50:993–1004 [CrossRef]
    [Google Scholar]
  21. Liu H. 2001; Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol 4:728–735 [CrossRef]
    [Google Scholar]
  22. Lo H.-J., Kohler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. 1997; Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949 [CrossRef]
    [Google Scholar]
  23. Marzluf G. A. 1997; Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61:17–32
    [Google Scholar]
  24. Nantel A., Dignard D., Bachewich C. & 12 other authors; 2002; Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 13:3452–3465 [CrossRef]
    [Google Scholar]
  25. Navarro-Garcia F., Sanchez M., Nombela C., Pla J. 2001; Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol Rev 25:245–268 [CrossRef]
    [Google Scholar]
  26. Niimi K., Shepherd M. G., Cannon R. D. 1998; Candida albicans HEX1 gene, a reporter of gene expression inSaccharomyces cerevisiae. Arch Microbiol 170:113–119 [CrossRef]
    [Google Scholar]
  27. Odds F. C. 1988 Candida and Candidosis, 2nd edn. London: Baillière Tindall;
    [Google Scholar]
  28. Olaiya A. F., Steed J. R., Sogin S. J. 1980; Deoxyribonucleic acid-deficient strains of Candida albicans. J Bacteriol 141:1284–1290
    [Google Scholar]
  29. Palecek S. P., Parikh A. S., Kron S. J. 2002; Sensing, signalling and integrating physical processes during Saccharomyces cerevisiae invasive and filamentous growth. Microbiology 148:893–907
    [Google Scholar]
  30. Perez-Campo F. M., Dominguez A. 2001; Factors affecting the morphogenetic switch in Yarrowia lipolytica. Curr Microbiol 43:429–433 [CrossRef]
    [Google Scholar]
  31. Reynolds R., Braude A. I. 1956; The filament inducing property of blood for Candida albicans; its nature and significance. Clin Res Proc 4:40
    [Google Scholar]
  32. Rocha C. R. C., Schroppel K., Harcus D., Marcil A., Dignard D., Taylor B. N., Thomas D. Y., Whiteway M., Leberer E. 2001; Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell 12:3631–3643 [CrossRef]
    [Google Scholar]
  33. Rolland F., de Winde J. H., Lemaire K., Boles E., Thevelein J. M., Winderickx J. 2000; Glucose-induced camp signaling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separate hexose kinase-dependent sensing process. Mol Microbiol 38:348–358 [CrossRef]
    [Google Scholar]
  34. Rolland F., Winderickx J., Thevelein J. M. 2002; Glucose-sensing and -signaling mechanisms in yeast. FEMS Yeast Res 2:183–201 [CrossRef]
    [Google Scholar]
  35. Ross I. K., De Bernardis F., Emerson G. W., Cassone A., Sullivan P. A. 1990; The secreted aspartate proteinase of Candida albicans: physiology of secretion and virulence of a proteinase-deficient mutant. J Gen Microbiol 136:687–694 [CrossRef]
    [Google Scholar]
  36. Schmid J., Herd S., Hunter P. R. & 13 other authors; 1999; Evidence for a general-purpose genotype in Candida albicans, highly prevalent in multiple geographical regions, patient types and types of infection. Microbiology 145:2405–2413
    [Google Scholar]
  37. Shepherd M. G., Chiew Y. Y., Ram S. P., Sullivan P. A. 1980; Germ tube induction in Candida albicans. Can J Microbiol 26:21–26 [CrossRef]
    [Google Scholar]
  38. Sullivan P. A., Yin C. Y., Molloy C., Templeton M. D., Shepherd M. G. 1983; An analysis of the metabolism and cell wall composition of Candida albicans during germ tube formation. Can J Microbiol 29:1514–1525 [CrossRef]
    [Google Scholar]
  39. Swoboda R. K., Bertram G., Delbruck S., Ernst J. F., Gow N. A., Gooday G. W., Brown A. J. 1994; Fluctuations in glycolytic mRNA levels during morphogenesis in Candida albicans reflect underlying changes in growth and are not a response to cellular dimorphism. Mol Microbiol 13:663–672 [CrossRef]
    [Google Scholar]
  40. Taschdjian C. L., Burchall J. J., Kozinn P. J. 1960; Rapid identification of Candida albicans by filamentation on serum and serum substitutes. Am J Dis Child 99:212–215
    [Google Scholar]
  41. Varma A., Singh B. B., Karnani N., Lichtenberg-Frate H., Hofer M., Magee B. B., Prasad R. 2000; Molecular cloning and functional characterization of a glucose transporter, CaHGT1, of Candida albicans. FEMS Microbiol Lett 182:15–21 [CrossRef]
    [Google Scholar]
  42. Vidotto V., Accattatis G., Zhang Q., Campanini G., Aoki S. 1996; Glucose influence on germ tube production in Candida albicans. Mycopathologia 133:143–147 [CrossRef]
    [Google Scholar]
  43. Walsh T. J., Kelly P., Peebles R., Lee J., Lecciones J., Pizzo P. A. 1994; Biochemical and pharmacological factors causing induction and suppression of germination of Trichosporon beigelii. J Med Vet Mycol 32:123–132
    [Google Scholar]
  44. White S., Larsen B. 1997; Candida albicans morphogenesis is influenced by estrogen. Cell Mol Life Sci 53:744–749 [CrossRef]
    [Google Scholar]
  45. Whiteway M. 2000; Transcriptional control of cell type and morphogenesis in Candida albicans. Curr Opin Microbiol 3:582–588 [CrossRef]
    [Google Scholar]
  46. Witkin S. S., Kalo-Klein A. 1991; Enhancement of germ tube formation in Candida albicans by β-endorphin. Am J Obstet Gynecol 164:917–920 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27121-0
Loading
/content/journal/micro/10.1099/mic.0.27121-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error