1887

Abstract

is an important pathogen of humans, causing a range of superficial and potentially life-threatening diseases. Infection of the fruit fly with results in systemic infection followed by death. Screening of defined mutants for components important in pathogenesis identified and , with fly death up to threefold slower after infection with the respective mutants compared to the wild-type. Infection of with reporter gene fusion strains demonstrated the expression levels of the accessory gene regulator, , -toxin, , and a manganese transporter, . The use of the green fluorescent protein as a reporter under the control of the promoter (P3) showed microcolony formation . The disease model also allowed the effect of antibiotic treatment on the flies to be determined. is a genetically tractable model host for high-throughput analysis of virulence determinants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27116-0
2004-07-01
2019-09-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502347.html?itemId=/content/journal/micro/10.1099/mic.0.27116-0&mimeType=html&fmt=ahah

References

  1. Abdelnour, A., Arvidson, S., Bremell, T., Ryden, C. & Tarkowski, A. ( 1993; ). The accessory gene regulator (agr) controls Staphylococcus aureus virulence in a murine arthritis model. Infect Immun 61, 3879–3885.
    [Google Scholar]
  2. Aish, J. ( 2003; ). Environmental regulation of virulence determinant expression in Staphylococcus aureus. PhD thesis, University of Sheffield.
  3. Cheung, A. L., Nast, C. C. & Bayer, A. S. ( 1998; ). Selective activation of sar promoters with the use of green fluorescent protein transcriptional fusions as the detection system in the rabbit endocarditis model. Infect Immun 66, 5988–5993.
    [Google Scholar]
  4. Compagnone-Post, P., Malyankar, U. & Khan, S. A. ( 1991; ). Role of host factors in the regulation of the enterotoxin B gene. J Bacteriol 173, 1827–1830.
    [Google Scholar]
  5. Darby, C., Cosma, C. L., Thomas, J. H. & Manoil, C. ( 1999; ). Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96, 15202–15207.[CrossRef]
    [Google Scholar]
  6. D'Argenio, D. A., Gallagher, L. A., Berg, C. A. & Manoil, C. ( 2000; ). Drosophila as a model host for Pseudomonas aeruginosa infection. J Bacteriol 183, 1466–1471.
    [Google Scholar]
  7. Dionne, M. S., Ghori, N. & Schneider, D. S. ( 2003; ). Drosophila melanogaster is a genetically tractable model host for Mycobacterium marinum. Infect Immun 71, 3540–3550.[CrossRef]
    [Google Scholar]
  8. Fauvarque, M. O., Bergeret, E., Chabert, J., Dacheux, D., Satre, M. & Attree, I. ( 2002; ). Role and activation of type III secretion system genes in Pseudomonas aeruginosa induced Drosophila killing. Microb Pathog 32, 287–295.[CrossRef]
    [Google Scholar]
  9. Garsin, D. A., Sifri, C. D., Mylonakis, E., Qin, X., Singh, K. V., Murray, B. E., Calderwood, S. B. & Ausubel, F. M. ( 2001; ). A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci U S A 98, 10892–10897.[CrossRef]
    [Google Scholar]
  10. Goerke, C., Fluckiger, U., Steinhuber, A., Zimmerli, W. & Wolz, C. ( 2001; ). Impact of the regulatory loci agr, sarA and sae of Staphylococcus aureus on the induction of alpha-toxin during device-related infection resolved by direct quantitative transcript analysis. Mol Microbiol 40, 1439–1447.[CrossRef]
    [Google Scholar]
  11. Horsburgh, M. J., Clements, M. O., Crossley, H., Ingham, E. & Foster, S. J. ( 2001a; ). PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect Immun 69, 3744–3754.[CrossRef]
    [Google Scholar]
  12. Horsburgh, M. J., Ingham, E. & Foster, S. J. ( 2001b; ). In Staphylococcus aureus, Fur is an interactive regulator with PerR, contributes to virulence, and is necessary for oxidative stress resistance through positive regulation of catalase and iron homeostasis. J Bacteriol 183, 468–475.[CrossRef]
    [Google Scholar]
  13. Horsburgh, M. J., Aish, J. L., White, I. J., Shaw, L., Lithgow, J. K. & Foster, S. J. ( 2002a; ). σ B modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol 184, 5457–5467.[CrossRef]
    [Google Scholar]
  14. Horsburgh, M. J., Wharton, S. J., Cox, A. G., Ingham, E., Peacock, S. & Foster, S. J. ( 2002b; ). MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Mol Microbiol 44, 1269–1286.[CrossRef]
    [Google Scholar]
  15. Horsburgh, M. J., Wiltshire, M. D., Crossley, H., Ingham, E. & Foster, S. J. ( 2004; ). PheP, a putative amino acid permease of Staphylococcus aureus contributes to survival in vivo and during starvation. Infect Immun 72, 3073–3076.[CrossRef]
    [Google Scholar]
  16. Kaito, C., Akimitsu, N., Watanabe, H. & Sekimizu, K. ( 2002; ). Silkworm larvae as an animal model of bacterial infection pathogenic to humans. Microb Pathog 32, 183–190.[CrossRef]
    [Google Scholar]
  17. Karavolos, M. H., Horsburgh, M. J., Ingham, E. & Foster, S. J. ( 2003; ). Role and regulation of the superoxide dismutases of Staphylococcus aureus. Microbiology 149, 2749–2758.[CrossRef]
    [Google Scholar]
  18. Kurz, C. L. & Ewbank, J. J. ( 2003; ). Caenorhabtidis elegans: an emerging genetic model for the study of innate immunity. Nat Rev Genet 4, 380–390.
    [Google Scholar]
  19. Lemaitre, B., Reachhart, J. M. & Hoffmann, J. A. ( 1997; ). Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci U S A 94, 14614–14619.[CrossRef]
    [Google Scholar]
  20. Leulier, F., Parquet, C., Pili-Floury, S., Ryu, J. H., Caroff, M., Lee, W. J., Mengin-Lecreulx, D. & Lemaitre, B. ( 2003; ). The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol 4, 478–484.[CrossRef]
    [Google Scholar]
  21. Mansfield, B. E., Dionne, M. S., Schneider, D. S. & Freitag, N. E. ( 2003; ). Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cell Microbiol 5, 901–911.[CrossRef]
    [Google Scholar]
  22. Neely, M. N., Pfeifer, J. D. & Caparon, M. ( 2002; ). Streptococcus-Zebrafish model of bacterial pathogenesis. Infect Immun 70, 3904–3914.[CrossRef]
    [Google Scholar]
  23. Novick, R. ( 1967; ). Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. Virology 33, 155–166.[CrossRef]
    [Google Scholar]
  24. Pili-Floury, S., Leulier, F., Takahashi, K., Saigo, K., Samain, E., Ueda, R. & Lemaitre, B. ( 2004; ). In vivo RNA interference analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults. J Biol Chem 279, 12848–12853.[CrossRef]
    [Google Scholar]
  25. Qazi, S. N. A., Counil, E., Morrissey, J., Rees, C. E. D., Cockayne, A., Winzer, K., Chan, W. C., Williams, P. & Hill, P. J. ( 2001; ). agr expression precedes escape of internalised Staphylococcus aureus from the host endosome. Infect Immun 69, 7074–7082.[CrossRef]
    [Google Scholar]
  26. Rahme, L. G., Tan, M. W., Le, L., Wong, S. M., Tompkins, R. G., Calderwood, S. B. & Ausubel, F. M. ( 1997; ). Use of model plant hosts to identify Pseudomonas aeruginosa virulence factors. Proc Natl Acad Sci U S A 94, 13245–13250.[CrossRef]
    [Google Scholar]
  27. Sifri, C. D., Begun, J., Ausubel, F. M. & Calderwood, S. B. ( 2003; ). Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun 71, 2208–2217.[CrossRef]
    [Google Scholar]
  28. Solomon, J. M., Rupper, A., Cardelli, J. A. & Isberg, R. R. ( 2000; ). Intracellular growth of Legionella pneumophila in Dictyostelium discoideum, a system for genetic analysis of host-pathogen interactions. Infect Immun 68, 2939–2947.[CrossRef]
    [Google Scholar]
  29. Somerville, G. A., Chaussee, M. S., Morgan, C. I., Fitzgerald, J. R., Dorward, D. W., Reitzer, L. J. & Musser, J. M. ( 2002; ). Staphylococcus aureus aconitase inactivation unexpectedly inhibits post-exponential-phase growth and enhances stationary-phase survival. Infect Immun 70, 6373–6382.[CrossRef]
    [Google Scholar]
  30. Takeda, K. & Akira, S. ( 2003; ). Toll receptors and pathogen resistance. Cell Microbiol 5, 143–153.[CrossRef]
    [Google Scholar]
  31. Tan, M. W. & Ausubel, F. M. ( 2000; ). Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. Curr Opin Microbiol 3, 29–34.[CrossRef]
    [Google Scholar]
  32. Tarkowski, A., Collins, L. V., Gjertsson, I., Hultgren, O. H., Jonsson, I. M., Sakiniene, E. & Verdrengh, M. ( 2001; ). Model systems: modelling human staphylococcal arthritis and sepsis in the mouse. Trends Microbiol 9, 321–326.[CrossRef]
    [Google Scholar]
  33. Valenti-Weigand, P., Benkel, P., Rohde, M. & Chhatwal, G. S. ( 1996; ). Entry and intracellular survival of group B streptococci in J774 macrophages. Infect Immun 64, 2467–2473.
    [Google Scholar]
  34. van der Sar, A. M., Musters, R. J. P., van Eden, F. J. M., Appelmelk, B. J., Vandenbroucke-Grauls, C. M. J. E. & Bitter, W. ( 2003; ). Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol 5, 601–611.[CrossRef]
    [Google Scholar]
  35. Waldvogel, F. A. ( 1995; ). Staphylococcus aureus (including toxic shock syndrome). In Principles and Practice of Infectious Diseases, pp. 1754–1777. Edited by G. L. Mandell, J. E. Bennett & R. Dolin. New York: Churchill Livingstone.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27116-0
Loading
/content/journal/micro/10.1099/mic.0.27116-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error