1887

Abstract

is a human pathogen that is naturally transformable. In this study a major component of the homologous recombination pathway, the RexAB exonuclease/helicase, was characterized. and insertional mutants were constructed using mutagenesis and found to have identical phenotypes. Both mutants displayed poor cell viability, reduced double-strand exonuclease activity, UV sensitivity and a reduced level of gene conversion compared to the wild-type strain. No effect was observed on plasmid and chromosomal transformation efficiencies. These results indicate that in , RexAB is required for DNA repair, but not for chromosomal transformation and plasmid establishment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27106-0
2004-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502409.html?itemId=/content/journal/micro/10.1099/mic.0.27106-0&mimeType=html&fmt=ahah

References

  1. Alonso J. C., Tailor R. H., Luder G. 1988; Characterization of recombination-deficient mutants of Bacillus subtilis. J Bacteriol 170:3001–3007
    [Google Scholar]
  2. Ballester S., Lopez P., Alonso J. C., Espinosa M., Lacks S. A. 1986; Selective advantage of deletions enhancing chloramphenicol acetyltransferase gene expression in Streptococcus pneumoniae plasmids. Gene 41:153–163 [CrossRef]
    [Google Scholar]
  3. Berka R. M., Hahn J., Albano M., Draskovic I., Persuh M., Cui X., Sloma A., Widner W., Dubnau D. 2002; Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. Mol Microbiol 43:1331–1345 [CrossRef]
    [Google Scholar]
  4. Biswas I., Maguin E., Ehrlich S. D., Gruss A. 1995; A 7-base-pair sequence protects DNA from exonucleolytic degradation in Lactococcus lactis. Proc Natl Acad Sci U S A 92:2244–2248 [CrossRef]
    [Google Scholar]
  5. Capaldo F. N., Ramsey G., Barbour S. D. 1974; Analysis of the growth of recombination-deficient strains of Escherichia coli K-12. J Bacteriol 118:242–249
    [Google Scholar]
  6. Chedin F., Kowalczykowski S. C. 2002; A novel family of regulated helicases/nucleases from Gram-positive bacteria: insights into the initiation of DNA recombination. Mol Microbiol 43:823–834 [CrossRef]
    [Google Scholar]
  7. Chedin F., Noirot P., Biaudet V., Ehrlich S. D. 1998; A five-nucleotide sequence protects DNA from exonucleolytic degradation by AddAB, the RecBCD analogue of Bacillus subtilis. Mol Microbiol 29:1369–1377 [CrossRef]
    [Google Scholar]
  8. Chedin F., Ehrlich S. D., Kowalczykowski S. C. 2000; The Bacillus subtilis AddAB helicase/nuclease is regulated by its cognate Chi sequence in vitro. J Mol Biol 298:7–20 [CrossRef]
    [Google Scholar]
  9. Claverys J. P., Prudhomme M., Mortier-Barriere I., Martin B. 2000; Adaptation to the environment: Streptococcus pneumoniae, a paradigm for recombination-mediated genetic plasticity?. Mol Microbiol 35:251–259 [CrossRef]
    [Google Scholar]
  10. Dabert P., Ehrlich S. D., Gruss A. 1992; Chi sequence protects against RecBCD degradation of DNA in vivo. Proc Natl Acad Sci U S A 89:12073–12077 [CrossRef]
    [Google Scholar]
  11. Doly J., Sasarman E., Anagnostopoulos C. 1974; ATP-dependent deoxyribonuclease in Bacillus subtilis and a mutant deficient in this activity. Mutat Res 22:15–23 [CrossRef]
    [Google Scholar]
  12. Dopazo J., Mendoza A., Herrero J.13 other authors 2001; Annotated draft genomic sequence from a Streptococcus pneumoniae type 19F clinical isolate. Microb Drug Resist 7:99–125 [CrossRef]
    [Google Scholar]
  13. Dubnau D. 1999; DNA uptake in bacteria. Annu Rev Microbiol 53:217–244 [CrossRef]
    [Google Scholar]
  14. El Karoui M., Ehrlich D., Gruss A. 1998; Identification of the lactococcal exonuclease/recombinase and its modulation by the putative Chi sequence. Proc Natl Acad Sci U S A 95:626–631 [CrossRef]
    [Google Scholar]
  15. El Karoui M., Biaudet V., Schbath S., Gruss A. 1999; Characteristics of Chi distribution on different bacterial genomes. Res Microbiol 150:579–587 [CrossRef]
    [Google Scholar]
  16. Fernandez S., Ayora S., Alonso J. C. 2000; Bacillus subtilis homologous recombination: genes and products. Res Microbiol 151:481–486 [CrossRef]
    [Google Scholar]
  17. Garcia E., Ronda C., Garcia J., Lopez R. 1985; a rapid procedure to detect the autolysin phenotype in Streptococcus pneumoniae. FEMS Microbiol Lett 29:77–81 [CrossRef]
    [Google Scholar]
  18. Gruss A., Michel B. 2001; The replication-recombination connection: insights from genomics. Curr Opin Microbiol 4:595–601 [CrossRef]
    [Google Scholar]
  19. Haijema B. J., Hamoen L. W., Kooistra J., Venema G., van Sinderen D. 1995; Expression of the ATP-dependent deoxyribonuclease of Bacillus subtilis is under competence-mediated control. Mol Microbiol 15:203–211 [CrossRef]
    [Google Scholar]
  20. Haijema B. J., Noback M., Hesseling A., Kooistra J., Venema G., Meima R. 1996; Replacement of the lysine residue in the consensus ATP-binding sequence of the AddA subunit of AddAB drastically affects chromosomal recombination in transformation and transduction of Bacillus subtilis. Mol Microbiol 21:989–999 [CrossRef]
    [Google Scholar]
  21. Hamoen L. W., Smits W. K., Jong Ad A., Holsappel S., Kuipers O. P. 2002; Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic Acids Res 30:5517–5528 [CrossRef]
    [Google Scholar]
  22. Kobayashi I. 1992; Mechanisms for gene conversion and homologous recombination: the double-strand break repair model and the successive half crossing-over model. Adv Biophys 28:81–133 [CrossRef]
    [Google Scholar]
  23. Kooistra J., Venema G. 1991; Cloning, sequencing, and expression of Bacillus subtilis genes involved in ATP-dependent nuclease synthesis. J Bacteriol 173:3644–3655
    [Google Scholar]
  24. Kooistra J., Vosman B., Venema G. 1988; Cloning and characterization of a Bacillus subtilis transcription unit involved in ATP-dependent DNase synthesis. J Bacteriol 170:4791–4797
    [Google Scholar]
  25. Kuzminov A. 1995; Collapse and repair of replication forks in Escherichia coli. Mol Microbiol 16:373–384 [CrossRef]
    [Google Scholar]
  26. Kuzminov A. 2001; Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc Natl Acad Sci U S A 98:8241–8246 [CrossRef]
    [Google Scholar]
  27. Lopez R., Sanchez-Puelles J. M., Garcia E., Garcia J. L., Ronda C., Garcia P. 1986; Isolation, characterization and physiological properties of an autolytic-deficient mutant of Streptococcus pneumoniae. Mol Gen Genet 204:237–242 [CrossRef]
    [Google Scholar]
  28. Martin B., Garcia P., Castanie M. P., Claverys J. P. 1995; The recA gene of Streptococcus pneumoniae is part of a competence-induced operon and controls lysogenic induction. Mol Microbiol 15:367–379 [CrossRef]
    [Google Scholar]
  29. Martin B., Prudhomme M., Alloing G., Granadel C., Claverys J. P. 2000; Cross-regulation of competence pheromone production and export in the early control of transformation in Streptococcus pneumoniae. Mol Microbiol 38:867–878 [CrossRef]
    [Google Scholar]
  30. Oggioni M. R., Claverys J. P. 1999; Repeated extragenic sequences in prokaryotic genomes: a proposal for the origin and dynamics of the RUP element in Streptococcus pneumoniae. Microbiology 145:2647–2653
    [Google Scholar]
  31. Ogura M., Yamaguchi H., Kobayashi K., Ogasawara N., Fujita Y., Tanaka T. 2002; Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J Bacteriol 184:2344–2351 [CrossRef]
    [Google Scholar]
  32. Quiberoni A., Biswas I., El Karoui M., Rezaiki L., Tailliez P., Gruss A. 2001a; In vivo evidence for two active nuclease motifs in the double-strand break repair enzyme RexAB of Lactococcus lactis. J Bacteriol 183:4071–4078 [CrossRef]
    [Google Scholar]
  33. Quiberoni A., Rezaiki L., El Karoui M., Biswas I., Tailliez P., Gruss A. 2001b; Distinctive features of homologous recombination in an ‘old’ microorganism, Lactococcus lactis. Res Microbiol 152:131–139 [CrossRef]
    [Google Scholar]
  34. Sourice S., Biaudet V., El Karoui M., Ehrlich S. D., Gruss A. 1998; Identification of the Chi site of Haemophilus influenzae as several sequences related to the Escherichia coli Chi site. Mol Microbiol 27:1021–1029 [CrossRef]
    [Google Scholar]
  35. Sung C. K., Li H., Claverys J. P., Morrison D. A. 2001; An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl Environ Microbiol 67:5190–5196 [CrossRef]
    [Google Scholar]
  36. Tettelin H., Nelson K. E., Paulsen I. T. & 36 other authors; 2001; Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293:498–506 [CrossRef]
    [Google Scholar]
  37. Thoms B., Wackernagel W. 1998; Interaction of RecBCD enzyme with DNA at double-strand breaks produced in UV-irradiated Escherichia coli: requirement for DNA end processing. J Bacteriol 180:5639–5645
    [Google Scholar]
  38. Tiraby G., Fox M. S., Bernheimer H. 1975; Marker discrimination in deoxyribonucleic acid-mediated transformation of various Pneumococcus strains. J Bacteriol 121:608–618
    [Google Scholar]
  39. Zieg J., Kushner S. R. 1977; Analysis of genetic recombination between two partially deleted lactose operons of Escherichia coli K-12. J Bacteriol 131:123–132
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27106-0
Loading
/content/journal/micro/10.1099/mic.0.27106-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error