1887

Abstract

Environmental signals trigger changes in the bacterial cell surface, including changes in exopolysaccharides and proteinaceous appendages that ultimately favour bacterial persistence and proliferation. Such adaptations are regulated in diverse bacteria by proteins with GGDEF and EAL domains. These proteins are predicted to regulate cell surface adhesiveness by controlling the level of a second messenger, the cyclic dinucleotide c-di-GMP. Genetic evidence suggests that the GGDEF domain acts as a nucleotide cyclase for c-di-GMP synthesis while the EAL domain is a good candidate for the opposing activity, a phosphodiesterase for c-di-GMP degradation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27099-0
2004-08-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/8/mic1502497.html?itemId=/content/journal/micro/10.1099/mic.0.27099-0&mimeType=html&fmt=ahah

References

  1. Aldridge, P., Paul, R., Goymer, P., Rainey, P. & Jenal, U. ( 2003; ). Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol Microbiol 47, 1695–1708.[CrossRef]
    [Google Scholar]
  2. Ali, A., Rashid, M. H. & Karaolis, D. K. ( 2002; ). High-frequency rugose exopolysaccharide production by Vibrio cholerae. Appl Environ Microbiol 68, 5773–5778.[CrossRef]
    [Google Scholar]
  3. Allen-Vercoe, E., Dibb-Fuller, M., Thorns, C. J. & Woodward, M. J. ( 1997; ). SEF17 fimbriae are essential for the convoluted colonial morphology of Salmonella enteritidis. FEMS Microbiol Lett 153, 33–42.[CrossRef]
    [Google Scholar]
  4. Anriany, Y. A., Weiner, R. M., Johnson, J. A., De Rezende, C. E. & Joseph, S. W. ( 2001; ). Salmonella enterica serovar Typhimurium DT104 displays a rugose phenotype. Appl Environ Microbiol 67, 4048–4056.[CrossRef]
    [Google Scholar]
  5. Ausmees, N., Jonsson, H., Höglund, S., Ljunggren, H. & Lindberg, M. ( 1999; ). Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii. Microbiology 145, 1253–1262.[CrossRef]
    [Google Scholar]
  6. Ausmees, N., Mayer, R., Weinhouse, H., Volman, G., Amikam, D., Benziman, M. & Lindberg, M. ( 2001; ). Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. FEMS Microbiol Lett 204, 163–167.[CrossRef]
    [Google Scholar]
  7. Boles, B. R. & McCarter, L. L. ( 2002; ). Vibrio parahaemolyticus scrABC, a novel operon affecting swarming and capsular polysaccharide regulation. J Bacteriol 184, 5946–5954.[CrossRef]
    [Google Scholar]
  8. Bomchil, N., Watnick, P. & Kolter, R. ( 2003; ). Identification and characterization of a Vibrio cholerae gene, mbaA, involved in maintenance of biofilm architecture. J Bacteriol 185, 1384–1390.[CrossRef]
    [Google Scholar]
  9. Chang, A. L., Tuckerman, J. R., Gonzalez, G., Mayer, R., Weinhouse, H., Volman, G., Amikam, D., Benziman, M. & Gilles-Gonzalez, M. A. ( 2001; ). Phosphodiesterase A1, a regulator of cellulose synthesis in Acetobacter xylinum, is a heme-based sensor. Biochemistry 40, 3420–3426.[CrossRef]
    [Google Scholar]
  10. Clements, M. O., Eriksson, S., Thompson, A., Lucchini, S., Hinton, J. C., Normark, S. & Rhen, M. ( 2002; ). Polynucleotide phosphorylase is a global regulator of virulence and persistency in Salmonella enterica. Proc Natl Acad Sci U S A 99, 8784–8789.[CrossRef]
    [Google Scholar]
  11. Cook, K. E. & Colvin, J. R. ( 1980; ). Evidence for a beneficial influence of cellulose production on growth of Acetobacter xylinum in liquid medium. Curr Microbiol 3, 203–205.[CrossRef]
    [Google Scholar]
  12. Darby, C., Hsu, J. W., Ghori, N. & Falkow, S. ( 2002; ). Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 417, 243–244.[CrossRef]
    [Google Scholar]
  13. D'Argenio, D. A., Calfee, M. W., Rainey, P. B. & Pesci, E. C. ( 2002; ). Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol 184, 6481–6489.[CrossRef]
    [Google Scholar]
  14. Drenkard, E. & Ausubel, F. M. ( 2002; ). Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416, 740–743.[CrossRef]
    [Google Scholar]
  15. Enos-Berlage, J. L. & McCarter, L. L. ( 2000; ). Relation of capsular polysaccharide production and colonial cell organization to colony morphology in Vibrio parahaemolyticus. J Bacteriol 182, 5513–5520.[CrossRef]
    [Google Scholar]
  16. Friedman, L. & Kolter, R. ( 2004; ). Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51, 675–690.
    [Google Scholar]
  17. Gal, M., Preston, G. M., Massey, R. C., Spiers, A. J. & Rainey, P. B. ( 2003; ). Genes encoding a cellulosic polymer contribute toward the ecological success of Pseudomonas fluorescens SBW25 on plant surfaces. Mol Ecol 12, 3109–3121.[CrossRef]
    [Google Scholar]
  18. Gallagher, L. A. & Manoil, C. ( 2001; ). Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183, 6207–6214.[CrossRef]
    [Google Scholar]
  19. Galperin, M. Y., Nikolskaya, A. N. & Koonin, E. V. ( 2001; ). Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203, 11–21.[CrossRef]
    [Google Scholar]
  20. Gronewold, T. M. & Kaiser, D. ( 2001; ). The act operon controls the level and time of C-signal production for Myxococcus xanthus development. Mol Microbiol 40, 744–756.[CrossRef]
    [Google Scholar]
  21. Hare, J. M. & McDonough, K. A. ( 1999; ). High-frequency RecA-dependent and -independent mechanisms of Congo red binding mutations in Yersinia pestis. J Bacteriol 181, 4896–4904.
    [Google Scholar]
  22. Haugo, A. J. & Watnick, P. I. ( 2002; ). Vibrio cholerae CytR is a repressor of biofilm development. Mol Microbiol 45, 471–483.[CrossRef]
    [Google Scholar]
  23. Hecht, G. B. & Newton, A. ( 1995; ). Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. J Bacteriol 177, 6223–6229.
    [Google Scholar]
  24. Hinnebusch, B. J., Perry, R. D. & Schwan, T. G. ( 1996; ). Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273, 367–370.[CrossRef]
    [Google Scholar]
  25. Hinnebusch, B. J., Rosso, M. L., Schwan, T. G. & Carniel, E. ( 2002; ). High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut. Mol Microbiol 46, 349–354.[CrossRef]
    [Google Scholar]
  26. Huang, B., Whitchurch, C. B. & Mattick, J. S. ( 2003; ). FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J Bacteriol 185, 7068–7076.[CrossRef]
    [Google Scholar]
  27. Huber, B., Riedel, K., Köthe, M., Givskov, M., Molin, S. & Eberl, L. ( 2002; ). Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111. Mol Microbiol 46, 411–426.[CrossRef]
    [Google Scholar]
  28. Iyer, L. M., Anantharaman, V. & Aravind, L. ( 2003; ). Ancient conserved domains shared by animal soluble guanylyl cyclases and bacterial signaling proteins. BMC Genomics 4, 5 (http://www.biomedcentral.com/1471-2164/4/5).[CrossRef]
    [Google Scholar]
  29. Jones, H. A., Lillard, J. W., Jr & Perry, R. D. ( 1999; ). HmsT, a protein essential for expression of the haemin storage (Hms+) phenotype of Yersinia pestis. Microbiology 145, 2117–2128.[CrossRef]
    [Google Scholar]
  30. Joshua, G. W., Karlyshev, A. V., Smith, M. P., Isherwood, K. E., Titball, R. W. & Wren, B. W. ( 2003; ). A Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface. Microbiology 149, 3221–3229.[CrossRef]
    [Google Scholar]
  31. Kimura, S., Chen, H. P., Saxena, I. M., Brown, R. M., Jr & Itoh, T. ( 2001; ). Localization of c-di-GMP-binding protein with the linear terminal complexes of Acetobacter xylinum. J Bacteriol 183, 5668–5674.[CrossRef]
    [Google Scholar]
  32. Li, Y., Sun, H., Ma, X., Lu, A., Lux, R., Zusman, D. & Shi, W. ( 2003; ). Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc Natl Acad Sci U S A 100, 5443–5448.[CrossRef]
    [Google Scholar]
  33. Merkel, T. J., Barros, C. & Stibitz, S. ( 1998; ). Characterization of the bvgR locus of Bordetella pertussis. J Bacteriol 180, 1682–1690.
    [Google Scholar]
  34. Pei, J. & Grishin, N. V. ( 2001; ). GGDEF domain is homologous to adenylyl cyclase. Proteins 42, 210–216.[CrossRef]
    [Google Scholar]
  35. Rainey, P. B. & Rainey, K. ( 2003; ). Evolution of cooperation and conflict in experimental bacterial populations. Nature 425, 72–74.[CrossRef]
    [Google Scholar]
  36. Rainey, P. B. & Travisano, M. ( 1998; ). Adaptive radiation in a heterogeneous environment. Nature 394, 69–72.[CrossRef]
    [Google Scholar]
  37. Rashid, M. H., Rajanna, C., Ali, A. & Karaolis, D. K. ( 2003; ). Identification of genes involved in the switch between the smooth and rugose phenotypes of Vibrio cholerae. FEMS Microbiol Lett 227, 113–119.[CrossRef]
    [Google Scholar]
  38. Römling, U. ( 2002; ). Molecular biology of cellulose production in bacteria. Res Microbiol 153, 205–212.[CrossRef]
    [Google Scholar]
  39. Römling, U., Sierralta, W. D., Eriksson, K. & Normark, S. ( 1998; ). Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol 28, 249–264.[CrossRef]
    [Google Scholar]
  40. Römling, U., Rohde, M., Olsén, A., Normark, S. & Reinköster, J. ( 2000; ). AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium, regulates at least two independent pathways. Mol Microbiol 36, 10–23.[CrossRef]
    [Google Scholar]
  41. Ross, P., Weinhouse, H., Aloni, Y. & 8 other authors ( 1987; ). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylate. Nature 325, 279–281.[CrossRef]
    [Google Scholar]
  42. Ross, P., Mayer, R. & Benziman, M. ( 1991; ). Cellulose biosynthesis and function in bacteria. Microbiol Rev 55, 35–58.
    [Google Scholar]
  43. Sokolowski, M. B. ( 2002; ). Neurobiology: social eating for stress. Nature 419, 893–894.[CrossRef]
    [Google Scholar]
  44. Solano, C., García, B., Valle, J., Berasain, C., Ghigo, J. M., Gamazo, C. & Lasa, I. ( 2002; ). Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43, 793–808.[CrossRef]
    [Google Scholar]
  45. Sowden, L. C. & Colvin, J. R. ( 1978; ). Morphology microstructure, and development of colonies of Acetobacter xylinum. Can J Microbiol 24, 772–779.[CrossRef]
    [Google Scholar]
  46. Spiers, A. J., Bohannon, J., Gehrig, S. M. & Rainey, P. B. ( 2003; ). Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose. Mol Microbiol 50, 15–27.[CrossRef]
    [Google Scholar]
  47. Tal, R., Wong, H. C., Calhoon, R. & 11 other authors ( 1998; ). Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol 180, 4416–4425.
    [Google Scholar]
  48. Tischler, A. D., Lee, S. H. & Camilli, A. ( 2002; ). The Vibrio cholerae vieSAB locus encodes a pathway contributing to cholera toxin production. J Bacteriol 184, 4104–4113.[CrossRef]
    [Google Scholar]
  49. Vallet, I., Olson, J. W., Lory, S., Lazdunski, A. & Filloux, A. ( 2001; ). The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc Natl Acad Sci U S A 98, 6911–6916.[CrossRef]
    [Google Scholar]
  50. Wai, S. N., Mizunoe, Y., Takade, A., Kawabata, S. I. & Yoshida, S. I. ( 1998; ). Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Appl Environ Microbiol 64, 3648–3655.
    [Google Scholar]
  51. Williams, W. S. & Cannon, R. E. ( 1989; ). Alternative environmental roles for cellulose produced by Acetobacter xylinum. Appl Environ Microbiol 55, 2448–2452.
    [Google Scholar]
  52. Wozniak, D. J., Wyckoff, T. J., Starkey, M., Keyser, R., Azadi, P., O'Toole, G. A. & Parsek, M. R. ( 2003; ). Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 100, 7907–7912.[CrossRef]
    [Google Scholar]
  53. Yildiz, F. H. & Schoolnik, G. K. ( 1999; ). Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci U S A 96, 4028–4033.[CrossRef]
    [Google Scholar]
  54. Zhu, J. & Mekalanos, J. J. ( 2003; ). Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell 5, 647–656.[CrossRef]
    [Google Scholar]
  55. Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W. & Römling, U. ( 2001; ). The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39, 1452–1463.[CrossRef]
    [Google Scholar]
  56. Zogaj, X., Bokranz, W., Nimtz, M. & Römling, U. ( 2003; ). Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71, 4151–4158.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27099-0
Loading
/content/journal/micro/10.1099/mic.0.27099-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error